构造演化过滤方程吸引子的一种数值方法

A. Salnikov, A. Akhmetzianov, A. Kushner, V. Lychagin
{"title":"构造演化过滤方程吸引子的一种数值方法","authors":"A. Salnikov, A. Akhmetzianov, A. Kushner, V. Lychagin","doi":"10.1109/SUMMA48161.2019.8947585","DOIUrl":null,"url":null,"abstract":"A numerical method is proposed to construct attractors of evolution equations describing the process of filtration of a two-phase liquid with allowance for capillary forces (the Rapoport-Leas model). The stability conditions for the proposed method are the conditions under which the third-order dynamics is an attractor for the initial equation. The solution of the initial equation is an iterative process, which can be paralleled to accelerate calculations.","PeriodicalId":163496,"journal":{"name":"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Numerical Method for Constructing Attractors of Evolutionary Filtration Equations\",\"authors\":\"A. Salnikov, A. Akhmetzianov, A. Kushner, V. Lychagin\",\"doi\":\"10.1109/SUMMA48161.2019.8947585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method is proposed to construct attractors of evolution equations describing the process of filtration of a two-phase liquid with allowance for capillary forces (the Rapoport-Leas model). The stability conditions for the proposed method are the conditions under which the third-order dynamics is an attractor for the initial equation. The solution of the initial equation is an iterative process, which can be paralleled to accelerate calculations.\",\"PeriodicalId\":163496,\"journal\":{\"name\":\"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUMMA48161.2019.8947585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUMMA48161.2019.8947585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种考虑毛细力的两相液体过滤过程演化方程吸引子的数值构造方法(Rapoport-Leas模型)。该方法的稳定性条件是三阶动力学是初始方程的吸引子。初始方程的求解是一个迭代过程,可以并行求解以加快计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Numerical Method for Constructing Attractors of Evolutionary Filtration Equations
A numerical method is proposed to construct attractors of evolution equations describing the process of filtration of a two-phase liquid with allowance for capillary forces (the Rapoport-Leas model). The stability conditions for the proposed method are the conditions under which the third-order dynamics is an attractor for the initial equation. The solution of the initial equation is an iterative process, which can be paralleled to accelerate calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信