使用紧凑的深度学习模型检测语音命令

Edoardo Bucheli-Susarrey, Miguel González-Mendoza, Oscar Herrera-Alcántara
{"title":"使用紧凑的深度学习模型检测语音命令","authors":"Edoardo Bucheli-Susarrey, Miguel González-Mendoza, Oscar Herrera-Alcántara","doi":"10.13053/rcs-148-7-26","DOIUrl":null,"url":null,"abstract":"The Keyword Detection problem consists in localizing a small vocabulary of words embedded in some stream of audio. Keyword Detection constantly runs in the background of many mobile devices and thus it becomes a requirement to create models with a small memory footprint and low computational power. Using the Simple Speech Commands Detection data set, we present a comparative study using two types of layers. Hand-Engineered layers are created from audio feature extraction models based on the Fourier Transform and Mel Filterbanks. Learned layers belong to the Deep Learning literature and include dense layers, recurrent layers and convolutional layers. Using the Deep Learning Pipeline, we organize these layers to solve the problem.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detección de comandos de voz con modelos compactos de aprendizaje profundo\",\"authors\":\"Edoardo Bucheli-Susarrey, Miguel González-Mendoza, Oscar Herrera-Alcántara\",\"doi\":\"10.13053/rcs-148-7-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Keyword Detection problem consists in localizing a small vocabulary of words embedded in some stream of audio. Keyword Detection constantly runs in the background of many mobile devices and thus it becomes a requirement to create models with a small memory footprint and low computational power. Using the Simple Speech Commands Detection data set, we present a comparative study using two types of layers. Hand-Engineered layers are created from audio feature extraction models based on the Fourier Transform and Mel Filterbanks. Learned layers belong to the Deep Learning literature and include dense layers, recurrent layers and convolutional layers. Using the Deep Learning Pipeline, we organize these layers to solve the problem.\",\"PeriodicalId\":220522,\"journal\":{\"name\":\"Res. Comput. Sci.\",\"volume\":\"424 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Res. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13053/rcs-148-7-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-7-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关键字检测问题包括定位嵌入在音频流中的小词汇表。关键字检测经常在许多移动设备的后台运行,因此需要创建内存占用小、计算能力低的模型。使用简单语音命令检测数据集,我们使用两种类型的层进行了比较研究。手工设计的层是基于傅里叶变换和梅尔滤波器组的音频特征提取模型创建的。学习层属于深度学习文献,包括密集层、循环层和卷积层。使用深度学习管道,我们组织这些层来解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detección de comandos de voz con modelos compactos de aprendizaje profundo
The Keyword Detection problem consists in localizing a small vocabulary of words embedded in some stream of audio. Keyword Detection constantly runs in the background of many mobile devices and thus it becomes a requirement to create models with a small memory footprint and low computational power. Using the Simple Speech Commands Detection data set, we present a comparative study using two types of layers. Hand-Engineered layers are created from audio feature extraction models based on the Fourier Transform and Mel Filterbanks. Learned layers belong to the Deep Learning literature and include dense layers, recurrent layers and convolutional layers. Using the Deep Learning Pipeline, we organize these layers to solve the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信