异构自监督学习的深度概率框架

Atabak Dehban, L. Jamone, A. R. Kampff, J. Santos-Victor
{"title":"异构自监督学习的深度概率框架","authors":"Atabak Dehban, L. Jamone, A. R. Kampff, J. Santos-Victor","doi":"10.1109/HUMANOIDS.2017.8246915","DOIUrl":null,"url":null,"abstract":"The perception of affordances provides an action-centered parametric representation of the environment. By perceiving an object's visual features in terms of what actions they afford, novel behavior opportunities can be inferred about previously unseen objects. In this paper, a flexible deep probabilistic framework is proposed which allows an explorative agent to learn tool-object affordances in continuous space. To this end, we use a deep variational auto-encoder with heterogeneous probabilistic distributions to infer the most probable action that achieves a desired effect or to predict a parametric probability distribution over action consequences i.e. effects. Our experiments show the generalization of the method to unseen objects and tools and we have analyzed the influence of different design choices. Our framework goes beyond other proposals by incorporating various probability distributions tailored for each individual modality and by eliminating the need for any pre-processing of the data.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A deep probabilistic framework for heterogeneous self-supervised learning of affordances\",\"authors\":\"Atabak Dehban, L. Jamone, A. R. Kampff, J. Santos-Victor\",\"doi\":\"10.1109/HUMANOIDS.2017.8246915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The perception of affordances provides an action-centered parametric representation of the environment. By perceiving an object's visual features in terms of what actions they afford, novel behavior opportunities can be inferred about previously unseen objects. In this paper, a flexible deep probabilistic framework is proposed which allows an explorative agent to learn tool-object affordances in continuous space. To this end, we use a deep variational auto-encoder with heterogeneous probabilistic distributions to infer the most probable action that achieves a desired effect or to predict a parametric probability distribution over action consequences i.e. effects. Our experiments show the generalization of the method to unseen objects and tools and we have analyzed the influence of different design choices. Our framework goes beyond other proposals by incorporating various probability distributions tailored for each individual modality and by eliminating the need for any pre-processing of the data.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

对启示的感知提供了以行动为中心的环境参数表示。通过感知物体的视觉特征,我们就可以从之前未见过的物体中推断出新的行为机会。本文提出了一种灵活的深度概率框架,该框架允许探索性智能体在连续空间中学习工具-对象的可视性。为此,我们使用具有异构概率分布的深度变分自编码器来推断达到预期效果的最可能动作或预测动作结果(即效果)的参数概率分布。实验结果表明,该方法适用于不可见的物体和工具,并分析了不同设计选择的影响。我们的框架超越了其他建议,它结合了为每个模态量身定制的各种概率分布,并且消除了对数据进行任何预处理的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep probabilistic framework for heterogeneous self-supervised learning of affordances
The perception of affordances provides an action-centered parametric representation of the environment. By perceiving an object's visual features in terms of what actions they afford, novel behavior opportunities can be inferred about previously unseen objects. In this paper, a flexible deep probabilistic framework is proposed which allows an explorative agent to learn tool-object affordances in continuous space. To this end, we use a deep variational auto-encoder with heterogeneous probabilistic distributions to infer the most probable action that achieves a desired effect or to predict a parametric probability distribution over action consequences i.e. effects. Our experiments show the generalization of the method to unseen objects and tools and we have analyzed the influence of different design choices. Our framework goes beyond other proposals by incorporating various probability distributions tailored for each individual modality and by eliminating the need for any pre-processing of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信