基于相关性特征子集选择的分类器集成

Junyang Zhao, Zhili Zhang, Zhenjun Chang, Dianjian Liu
{"title":"基于相关性特征子集选择的分类器集成","authors":"Junyang Zhao, Zhili Zhang, Zhenjun Chang, Dianjian Liu","doi":"10.1109/ICIVC.2017.7984731","DOIUrl":null,"url":null,"abstract":"For classifier ensemble systems, diversity is considered as an important factor for good generalization. In this paper, a classifier ensemble algorithm with relevance-based feature subset selection for classification is proposed. Firstly, a combined maximal class relevance and minimal feature relevance criterion is presented to evaluate candidate features, and to search diverse feature subspaces for classifier ensemble. And then bootstrap sampling is implemented on the feature subspaces for diverse training sets. Finally, the classifiers are trained on diverse data subspaces selected by feature subset search method with subsequent bootstrap. The experimental results show that the algorithm achieves high classification accuracies with small feature subspaces, which lead to a compact and effective ensemble system.","PeriodicalId":181522,"journal":{"name":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifier ensemble with relevance-based feature subset selection\",\"authors\":\"Junyang Zhao, Zhili Zhang, Zhenjun Chang, Dianjian Liu\",\"doi\":\"10.1109/ICIVC.2017.7984731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For classifier ensemble systems, diversity is considered as an important factor for good generalization. In this paper, a classifier ensemble algorithm with relevance-based feature subset selection for classification is proposed. Firstly, a combined maximal class relevance and minimal feature relevance criterion is presented to evaluate candidate features, and to search diverse feature subspaces for classifier ensemble. And then bootstrap sampling is implemented on the feature subspaces for diverse training sets. Finally, the classifiers are trained on diverse data subspaces selected by feature subset search method with subsequent bootstrap. The experimental results show that the algorithm achieves high classification accuracies with small feature subspaces, which lead to a compact and effective ensemble system.\",\"PeriodicalId\":181522,\"journal\":{\"name\":\"2017 2nd International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC.2017.7984731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2017.7984731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于分类器集成系统,多样性被认为是良好泛化的重要因素。本文提出了一种基于相关性特征子集选择的分类器集成算法。首先,提出了一种最大类相关性和最小特征相关性的组合准则来评估候选特征,并搜索不同的特征子空间进行分类器集成;然后对不同训练集的特征子空间进行自举采样。最后,在特征子集搜索方法选择的不同数据子空间上对分类器进行训练。实验结果表明,该算法在较小的特征子空间下实现了较高的分类精度,从而得到了一个紧凑有效的集成系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifier ensemble with relevance-based feature subset selection
For classifier ensemble systems, diversity is considered as an important factor for good generalization. In this paper, a classifier ensemble algorithm with relevance-based feature subset selection for classification is proposed. Firstly, a combined maximal class relevance and minimal feature relevance criterion is presented to evaluate candidate features, and to search diverse feature subspaces for classifier ensemble. And then bootstrap sampling is implemented on the feature subspaces for diverse training sets. Finally, the classifiers are trained on diverse data subspaces selected by feature subset search method with subsequent bootstrap. The experimental results show that the algorithm achieves high classification accuracies with small feature subspaces, which lead to a compact and effective ensemble system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信