{"title":"基于lstm的锂离子电池荷电状态实时估计","authors":"S. Kim, Jong Hyun Lee, Dong Hun Wang, Insoo Lee","doi":"10.23919/ICCAS52745.2021.9649878","DOIUrl":null,"url":null,"abstract":"Currently, lithium-ion batteries (a type of secondary battery) are used as the primary sources of power in many applications due to their low energy loss as a result of their high energy density and low self-discharge rate, and their ability to store energy for a long time. However, due to the frequent charging and discharging of such batteries, overcharging is inevitable. This can cause system shutdowns, accidents, or property damage due to explosions. Therefore, it is necessary to accurately predict the state of charge (SOC) of batteries for stable and efficient usage. Hence, in this paper, we propose a SOC estimation method using a vehicle driving simulator. After manufacturing the simulator to perform the battery discharge experiment, voltage, current, and discharge-time data were collected. Using the collected data as input parameters for an RNN-based LSTM, we estimated the SOC of the battery and compared the errors to. We then used the developed LSTM surrogate model to conduct discharge experiments and simultaneously estimate the SOC in real-time.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LSTM-Based Real-Time SOC Estimation of Lithium-Ion Batteries Using a Vehicle Driving Simulator\",\"authors\":\"S. Kim, Jong Hyun Lee, Dong Hun Wang, Insoo Lee\",\"doi\":\"10.23919/ICCAS52745.2021.9649878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, lithium-ion batteries (a type of secondary battery) are used as the primary sources of power in many applications due to their low energy loss as a result of their high energy density and low self-discharge rate, and their ability to store energy for a long time. However, due to the frequent charging and discharging of such batteries, overcharging is inevitable. This can cause system shutdowns, accidents, or property damage due to explosions. Therefore, it is necessary to accurately predict the state of charge (SOC) of batteries for stable and efficient usage. Hence, in this paper, we propose a SOC estimation method using a vehicle driving simulator. After manufacturing the simulator to perform the battery discharge experiment, voltage, current, and discharge-time data were collected. Using the collected data as input parameters for an RNN-based LSTM, we estimated the SOC of the battery and compared the errors to. We then used the developed LSTM surrogate model to conduct discharge experiments and simultaneously estimate the SOC in real-time.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LSTM-Based Real-Time SOC Estimation of Lithium-Ion Batteries Using a Vehicle Driving Simulator
Currently, lithium-ion batteries (a type of secondary battery) are used as the primary sources of power in many applications due to their low energy loss as a result of their high energy density and low self-discharge rate, and their ability to store energy for a long time. However, due to the frequent charging and discharging of such batteries, overcharging is inevitable. This can cause system shutdowns, accidents, or property damage due to explosions. Therefore, it is necessary to accurately predict the state of charge (SOC) of batteries for stable and efficient usage. Hence, in this paper, we propose a SOC estimation method using a vehicle driving simulator. After manufacturing the simulator to perform the battery discharge experiment, voltage, current, and discharge-time data were collected. Using the collected data as input parameters for an RNN-based LSTM, we estimated the SOC of the battery and compared the errors to. We then used the developed LSTM surrogate model to conduct discharge experiments and simultaneously estimate the SOC in real-time.