Beverley Skeggs
{"title":"类","authors":"Beverley Skeggs","doi":"10.4135/9781529714371.n12","DOIUrl":null,"url":null,"abstract":". For some g ≥ 3, let Γ be a finite index subgroup of the mapping class group of a genus g surface (possibly with boundary components and punc- tures). An old conjecture of Ivanov says that the abelianization of Γ should be finite. In the paper we prove two theorems supporting this conjecture. For the first, let T x denote the Dehn twist about a simple closed curve x . For some n ≥ 1, we have T nx ∈ Γ. We prove that T nx is torsion in the abelianization of Γ. Our second result shows that the abelianization of Γ is finite if Γ contains a “large chunk” (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves.","PeriodicalId":312918,"journal":{"name":"The SAGE Handbook of Marxism","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class\",\"authors\":\"Beverley Skeggs\",\"doi\":\"10.4135/9781529714371.n12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". For some g ≥ 3, let Γ be a finite index subgroup of the mapping class group of a genus g surface (possibly with boundary components and punc- tures). An old conjecture of Ivanov says that the abelianization of Γ should be finite. In the paper we prove two theorems supporting this conjecture. For the first, let T x denote the Dehn twist about a simple closed curve x . For some n ≥ 1, we have T nx ∈ Γ. We prove that T nx is torsion in the abelianization of Γ. Our second result shows that the abelianization of Γ is finite if Γ contains a “large chunk” (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves.\",\"PeriodicalId\":312918,\"journal\":{\"name\":\"The SAGE Handbook of Marxism\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The SAGE Handbook of Marxism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4135/9781529714371.n12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SAGE Handbook of Marxism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4135/9781529714371.n12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 对于某些g≥3,设Γ为g属曲面(可能有边界分量和孔)的映射类群的有限索引子群。伊万诺夫的一个老猜想说Γ的阿贝尔化应该是有限的。本文证明了支持这一猜想的两个定理。对于第一个,设T x表示关于一个简单闭合曲线x的Dehn扭转。对于某n≥1,我们有T∈Γ。我们在Γ的阿贝尔化中证明了tnx是一个扭转。我们的第二个结果表明,如果Γ包含Johnson核的“大块”(在某种技术意义上),即由关于分离曲线的扭曲生成的映射类群的子群,那么Γ的阿贝尔化是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Class
. For some g ≥ 3, let Γ be a finite index subgroup of the mapping class group of a genus g surface (possibly with boundary components and punc- tures). An old conjecture of Ivanov says that the abelianization of Γ should be finite. In the paper we prove two theorems supporting this conjecture. For the first, let T x denote the Dehn twist about a simple closed curve x . For some n ≥ 1, we have T nx ∈ Γ. We prove that T nx is torsion in the abelianization of Γ. Our second result shows that the abelianization of Γ is finite if Γ contains a “large chunk” (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信