一个高效的流计算和Hadoop整合平台

H. Matsuura, Masaru Ganse, T. Suzumura
{"title":"一个高效的流计算和Hadoop整合平台","authors":"H. Matsuura, Masaru Ganse, T. Suzumura","doi":"10.1109/IPDPSW.2012.252","DOIUrl":null,"url":null,"abstract":"Data Stream Processing or stream computing is the new computing paradigm for processing a massive amount of streaming data in real-time without storing them in secondary storage. In this paper we propose an integrated execution platform for Data Stream Processing and Hadoop with dynamic load balancing mechanism to realize an efficient operation of computer systems and reduction of latency of Data Stream Processing. Our implementation is built on top of System S, a distributed data stream processing system developed by IBM Research. Our experimental results show that our load balancing mechanism could increase CPU usage from 47.77% to 72.14% when compared to the one with no load balancing. Moreover, the result shows that latency for stream processing jobs are kept low even in a bursty situation by dynamically allocating more compute resources to stream processing jobs.","PeriodicalId":378335,"journal":{"name":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Highly Efficient Consolidated Platform for Stream Computing and Hadoop\",\"authors\":\"H. Matsuura, Masaru Ganse, T. Suzumura\",\"doi\":\"10.1109/IPDPSW.2012.252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Stream Processing or stream computing is the new computing paradigm for processing a massive amount of streaming data in real-time without storing them in secondary storage. In this paper we propose an integrated execution platform for Data Stream Processing and Hadoop with dynamic load balancing mechanism to realize an efficient operation of computer systems and reduction of latency of Data Stream Processing. Our implementation is built on top of System S, a distributed data stream processing system developed by IBM Research. Our experimental results show that our load balancing mechanism could increase CPU usage from 47.77% to 72.14% when compared to the one with no load balancing. Moreover, the result shows that latency for stream processing jobs are kept low even in a bursty situation by dynamically allocating more compute resources to stream processing jobs.\",\"PeriodicalId\":378335,\"journal\":{\"name\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2012.252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2012.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

数据流处理或流计算是一种新的计算范式,用于实时处理大量流数据,而无需将其存储在辅助存储器中。本文提出了一种基于动态负载均衡机制的数据流处理与Hadoop集成执行平台,以实现计算机系统的高效运行和减少数据流处理的延迟。我们的实现是建立在System S之上的,System S是IBM研究院开发的分布式数据流处理系统。实验结果表明,与没有负载均衡机制相比,我们的负载均衡机制可以将CPU使用率从47.77%提高到72.14%。此外,结果表明,通过动态地为流处理作业分配更多的计算资源,即使在突发情况下,流处理作业的延迟也保持较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Highly Efficient Consolidated Platform for Stream Computing and Hadoop
Data Stream Processing or stream computing is the new computing paradigm for processing a massive amount of streaming data in real-time without storing them in secondary storage. In this paper we propose an integrated execution platform for Data Stream Processing and Hadoop with dynamic load balancing mechanism to realize an efficient operation of computer systems and reduction of latency of Data Stream Processing. Our implementation is built on top of System S, a distributed data stream processing system developed by IBM Research. Our experimental results show that our load balancing mechanism could increase CPU usage from 47.77% to 72.14% when compared to the one with no load balancing. Moreover, the result shows that latency for stream processing jobs are kept low even in a bursty situation by dynamically allocating more compute resources to stream processing jobs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信