用于动作识别的时空小波

Dhruv Batra, Tsuhan Chen, R. Sukthankar
{"title":"用于动作识别的时空小波","authors":"Dhruv Batra, Tsuhan Chen, R. Sukthankar","doi":"10.1109/WMVC.2008.4544051","DOIUrl":null,"url":null,"abstract":"Recent works in action recognition have begun to treat actions as space-time volumes. This allows actions to be converted into 3-D shapes, thus converting the problem into that of volumetric matching. However, the special nature of the temporal dimension and the lack of intuitive volumetric features makes the problem both challenging and interesting. In a data-driven and bottom-up approach, we propose a dictionary of mid-level features called Space- Time Shapelets. This dictionary tries to characterize the space of local space-time shapes, or equivalently local motion patterns formed by the actions. Representing an action as a bag of these space-time patterns allows us to reduce the combinatorial space of these volumes, become robust to partial occlusions and errors in extracting spatial support. The proposed method is computationally efficient and achieves competitive results on a standard dataset.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Space-Time Shapelets for Action Recognition\",\"authors\":\"Dhruv Batra, Tsuhan Chen, R. Sukthankar\",\"doi\":\"10.1109/WMVC.2008.4544051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent works in action recognition have begun to treat actions as space-time volumes. This allows actions to be converted into 3-D shapes, thus converting the problem into that of volumetric matching. However, the special nature of the temporal dimension and the lack of intuitive volumetric features makes the problem both challenging and interesting. In a data-driven and bottom-up approach, we propose a dictionary of mid-level features called Space- Time Shapelets. This dictionary tries to characterize the space of local space-time shapes, or equivalently local motion patterns formed by the actions. Representing an action as a bag of these space-time patterns allows us to reduce the combinatorial space of these volumes, become robust to partial occlusions and errors in extracting spatial support. The proposed method is computationally efficient and achieves competitive results on a standard dataset.\",\"PeriodicalId\":150666,\"journal\":{\"name\":\"2008 IEEE Workshop on Motion and video Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Motion and video Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2008.4544051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

近年来在动作识别方面的研究开始将动作视为时空体。这允许将动作转换为三维形状,从而将问题转换为体积匹配问题。然而,时间维度的特殊性和缺乏直观的体积特征使得这个问题既具有挑战性又有趣。在数据驱动和自下而上的方法中,我们提出了一个称为时空Shapelets的中级特征字典。本词典试图描述局部时空形状的空间,或等效的由动作形成的局部运动模式。将一个动作表示为这些时空模式的集合,使我们能够减少这些体积的组合空间,在提取空间支持时对部分遮挡和错误变得健壮。该方法计算效率高,在标准数据集上取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-Time Shapelets for Action Recognition
Recent works in action recognition have begun to treat actions as space-time volumes. This allows actions to be converted into 3-D shapes, thus converting the problem into that of volumetric matching. However, the special nature of the temporal dimension and the lack of intuitive volumetric features makes the problem both challenging and interesting. In a data-driven and bottom-up approach, we propose a dictionary of mid-level features called Space- Time Shapelets. This dictionary tries to characterize the space of local space-time shapes, or equivalently local motion patterns formed by the actions. Representing an action as a bag of these space-time patterns allows us to reduce the combinatorial space of these volumes, become robust to partial occlusions and errors in extracting spatial support. The proposed method is computationally efficient and achieves competitive results on a standard dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信