非单调语言:用于单调和非单调逻辑推理的神经符号语言

E. Burattini, M. D. Gregorio, Antonio de Francesco
{"title":"非单调语言:用于单调和非单调逻辑推理的神经符号语言","authors":"E. Burattini, M. D. Gregorio, Antonio de Francesco","doi":"10.1109/SBRN.2002.1181487","DOIUrl":null,"url":null,"abstract":"The complete definition of a Neuro-Symbolic Language (NSL), partially introduced by Burattini et al. (2000), for monotonic and non-monotonic logical inference by means of artificial neural networks (ANNs) is presented. Both the language and its compiler have been designed and implemented. It has been shown that the ANN model here adopted (neural forward chaining) is a massively parallel abstract interpreter of definite logic programs; moreover, inhibition is used to implement a neural form of logical negation. Previous compilers for translating the neural representation of a given problem into a VHDL software, which in turn can set electronic device like FPGA, has been modified to fit the new and more complete features of the language.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NSL: a neuro-symbolic language for monotonic and non-monotonic logical inferences\",\"authors\":\"E. Burattini, M. D. Gregorio, Antonio de Francesco\",\"doi\":\"10.1109/SBRN.2002.1181487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complete definition of a Neuro-Symbolic Language (NSL), partially introduced by Burattini et al. (2000), for monotonic and non-monotonic logical inference by means of artificial neural networks (ANNs) is presented. Both the language and its compiler have been designed and implemented. It has been shown that the ANN model here adopted (neural forward chaining) is a massively parallel abstract interpreter of definite logic programs; moreover, inhibition is used to implement a neural form of logical negation. Previous compilers for translating the neural representation of a given problem into a VHDL software, which in turn can set electronic device like FPGA, has been modified to fit the new and more complete features of the language.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经符号语言(NSL)的完整定义,部分由Burattini等人(2000)介绍,用于通过人工神经网络(ann)进行单调和非单调逻辑推理。该语言及其编译器都已设计并实现。研究表明,本文所采用的人工神经网络模型(神经正向链)是一种对确定逻辑程序的大规模并行抽象解释器;此外,抑制被用来实现逻辑否定的神经形式。以前用于将给定问题的神经表示转换为VHDL软件的编译器,反过来可以设置像FPGA这样的电子设备,已经经过修改以适应该语言的新的和更完整的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NSL: a neuro-symbolic language for monotonic and non-monotonic logical inferences
The complete definition of a Neuro-Symbolic Language (NSL), partially introduced by Burattini et al. (2000), for monotonic and non-monotonic logical inference by means of artificial neural networks (ANNs) is presented. Both the language and its compiler have been designed and implemented. It has been shown that the ANN model here adopted (neural forward chaining) is a massively parallel abstract interpreter of definite logic programs; moreover, inhibition is used to implement a neural form of logical negation. Previous compilers for translating the neural representation of a given problem into a VHDL software, which in turn can set electronic device like FPGA, has been modified to fit the new and more complete features of the language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信