{"title":"磁辫的磁力线曲率","authors":"Murtadha Ali Rasheed, F. Mayah","doi":"10.31185/wjps.67","DOIUrl":null,"url":null,"abstract":"In this paper, we calculate the curvature numerically as a geometrical feature of the field lines of the magnetic braid that introduced by Antonia Wilmot-Smith and other new braid introduced in this work similar to that given by Wilmot-Smith but with four twisting regions are rotating one-by-one clockwise and anti-clockwise. The numerical calculation shows that the curvature of the field line of the new-version of the magnetic braid is much bigger than the curvature of the original model (Wilmot-Smith braid).","PeriodicalId":167115,"journal":{"name":"Wasit Journal of Pure sciences","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature of the Field Lines of Magnetic Braids\",\"authors\":\"Murtadha Ali Rasheed, F. Mayah\",\"doi\":\"10.31185/wjps.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we calculate the curvature numerically as a geometrical feature of the field lines of the magnetic braid that introduced by Antonia Wilmot-Smith and other new braid introduced in this work similar to that given by Wilmot-Smith but with four twisting regions are rotating one-by-one clockwise and anti-clockwise. The numerical calculation shows that the curvature of the field line of the new-version of the magnetic braid is much bigger than the curvature of the original model (Wilmot-Smith braid).\",\"PeriodicalId\":167115,\"journal\":{\"name\":\"Wasit Journal of Pure sciences\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Pure sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/wjps.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Pure sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjps.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we calculate the curvature numerically as a geometrical feature of the field lines of the magnetic braid that introduced by Antonia Wilmot-Smith and other new braid introduced in this work similar to that given by Wilmot-Smith but with four twisting regions are rotating one-by-one clockwise and anti-clockwise. The numerical calculation shows that the curvature of the field line of the new-version of the magnetic braid is much bigger than the curvature of the original model (Wilmot-Smith braid).