尺度空间压缩及其在光谱理论中的应用

G. Koutaki, K. Uchimura
{"title":"尺度空间压缩及其在光谱理论中的应用","authors":"G. Koutaki, K. Uchimura","doi":"10.1109/ICIP.2013.6738169","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the application of principal component analysis (PCA) to scale-spaces. PCA is a standard method used in computer vision tasks such as recognition of eigenfaces. Because the translation of an input image into scale-space is a continuous operation, it requires the extension of conventional finite matrix based PCA to an infinite number of dimensions. Here, we use spectral theory to resolve this infinite eigenproblem through the use of integration, and we propose an approximate solution based on polynomial equations. In order to clarify its eigensolutions, we apply spectral decomposition to gaussian scale-space. As an application of this proposed method we introduce a method for generating gaussian blur images, demonstrating that the accuracy of such an image can be made very high by using an arbitrary scale calculated through simple linear combination.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scale-space compression and its application using spectral theory\",\"authors\":\"G. Koutaki, K. Uchimura\",\"doi\":\"10.1109/ICIP.2013.6738169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the application of principal component analysis (PCA) to scale-spaces. PCA is a standard method used in computer vision tasks such as recognition of eigenfaces. Because the translation of an input image into scale-space is a continuous operation, it requires the extension of conventional finite matrix based PCA to an infinite number of dimensions. Here, we use spectral theory to resolve this infinite eigenproblem through the use of integration, and we propose an approximate solution based on polynomial equations. In order to clarify its eigensolutions, we apply spectral decomposition to gaussian scale-space. As an application of this proposed method we introduce a method for generating gaussian blur images, demonstrating that the accuracy of such an image can be made very high by using an arbitrary scale calculated through simple linear combination.\",\"PeriodicalId\":388385,\"journal\":{\"name\":\"2013 IEEE International Conference on Image Processing\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了主成分分析(PCA)在尺度空间中的应用。PCA是一种用于计算机视觉任务的标准方法,如特征脸识别。由于输入图像到尺度空间的转换是一个连续的操作,它需要将传统的基于有限矩阵的PCA扩展到无限维。在这里,我们使用谱理论通过使用积分来解决这个无限特征问题,我们提出了一个基于多项式方程的近似解。为了明确其特征解,我们将谱分解应用于高斯尺度空间。作为该方法的一个应用,我们介绍了一种生成高斯模糊图像的方法,证明了通过简单线性组合计算任意比例尺可以获得非常高的高斯模糊图像精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale-space compression and its application using spectral theory
In this paper, we propose the application of principal component analysis (PCA) to scale-spaces. PCA is a standard method used in computer vision tasks such as recognition of eigenfaces. Because the translation of an input image into scale-space is a continuous operation, it requires the extension of conventional finite matrix based PCA to an infinite number of dimensions. Here, we use spectral theory to resolve this infinite eigenproblem through the use of integration, and we propose an approximate solution based on polynomial equations. In order to clarify its eigensolutions, we apply spectral decomposition to gaussian scale-space. As an application of this proposed method we introduce a method for generating gaussian blur images, demonstrating that the accuracy of such an image can be made very high by using an arbitrary scale calculated through simple linear combination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信