基于稀疏表示的人类活动检测

D. Killedar, S. Sasi
{"title":"基于稀疏表示的人类活动检测","authors":"D. Killedar, S. Sasi","doi":"10.1109/AIPR.2014.7041933","DOIUrl":null,"url":null,"abstract":"Human activity detection from videos is very challenging, and has got numerous applications in sports evalution, video surveillance, elder/child care, etc. In this research, a model using sparse representation is presented for the human activity detection from the video data. This is done using a linear combination of atoms from a dictionary and a sparse coefficient matrix. The dictionary is created using a Spatio Temporal Interest Points (STIP) algorithm. The Spatio temporal features are extracted for the training video data as well as the testing video data. The K-Singular Value Decomposition (KSVD) algorithm is used for learning dictionaries for the training video dataset. Finally, human action is classified using a minimum threshold residual value of the corresponding action class in the testing video dataset. Experiments are conducted on the KTH dataset which contains a number of actions. The current approach performed well in classifying activities with a success rate of 90%.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human activity detection using sparse representation\",\"authors\":\"D. Killedar, S. Sasi\",\"doi\":\"10.1109/AIPR.2014.7041933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity detection from videos is very challenging, and has got numerous applications in sports evalution, video surveillance, elder/child care, etc. In this research, a model using sparse representation is presented for the human activity detection from the video data. This is done using a linear combination of atoms from a dictionary and a sparse coefficient matrix. The dictionary is created using a Spatio Temporal Interest Points (STIP) algorithm. The Spatio temporal features are extracted for the training video data as well as the testing video data. The K-Singular Value Decomposition (KSVD) algorithm is used for learning dictionaries for the training video dataset. Finally, human action is classified using a minimum threshold residual value of the corresponding action class in the testing video dataset. Experiments are conducted on the KTH dataset which contains a number of actions. The current approach performed well in classifying activities with a success rate of 90%.\",\"PeriodicalId\":210982,\"journal\":{\"name\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2014.7041933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从视频中进行人体活动检测是一项非常具有挑战性的工作,在体育评估、视频监控、老人/儿童护理等领域得到了广泛的应用。本文提出了一种基于稀疏表示的视频人体活动检测模型。这是使用字典中的原子和稀疏系数矩阵的线性组合来完成的。字典是使用时空兴趣点(STIP)算法创建的。提取训练视频数据和测试视频数据的时空特征。使用k -奇异值分解(KSVD)算法学习训练视频数据集的字典。最后,使用测试视频数据集中相应动作类的最小阈值残差对人类动作进行分类。在包含多个动作的KTH数据集上进行了实验。目前的方法在分类活动方面表现良好,成功率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human activity detection using sparse representation
Human activity detection from videos is very challenging, and has got numerous applications in sports evalution, video surveillance, elder/child care, etc. In this research, a model using sparse representation is presented for the human activity detection from the video data. This is done using a linear combination of atoms from a dictionary and a sparse coefficient matrix. The dictionary is created using a Spatio Temporal Interest Points (STIP) algorithm. The Spatio temporal features are extracted for the training video data as well as the testing video data. The K-Singular Value Decomposition (KSVD) algorithm is used for learning dictionaries for the training video dataset. Finally, human action is classified using a minimum threshold residual value of the corresponding action class in the testing video dataset. Experiments are conducted on the KTH dataset which contains a number of actions. The current approach performed well in classifying activities with a success rate of 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信