{"title":"$ \\mathbf C^n$中超曲面补的基本群","authors":"V. Kulikov","doi":"10.1070/IM1992V038N02ABEH002205","DOIUrl":null,"url":null,"abstract":"Let be a complex algebraic hypersurface in not passing through the point . The generators of the fundamental group and the relations among them are described in terms of the real cone over with apex at . This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in . A new proof of Zariski's conjecture about commutativity of the fundamental group for a projective nodal curve is given in the second part of the paper based on the description of the generators and the relations in the group obtained in the first part.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A HYPERSURFACE IN $ \\\\mathbf C^n$\",\"authors\":\"V. Kulikov\",\"doi\":\"10.1070/IM1992V038N02ABEH002205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a complex algebraic hypersurface in not passing through the point . The generators of the fundamental group and the relations among them are described in terms of the real cone over with apex at . This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in . A new proof of Zariski's conjecture about commutativity of the fundamental group for a projective nodal curve is given in the second part of the paper based on the description of the generators and the relations in the group obtained in the first part.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1992V038N02ABEH002205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V038N02ABEH002205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A HYPERSURFACE IN $ \mathbf C^n$
Let be a complex algebraic hypersurface in not passing through the point . The generators of the fundamental group and the relations among them are described in terms of the real cone over with apex at . This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in . A new proof of Zariski's conjecture about commutativity of the fundamental group for a projective nodal curve is given in the second part of the paper based on the description of the generators and the relations in the group obtained in the first part.