$ \mathbf C^n$中超曲面补的基本群

V. Kulikov
{"title":"$ \\mathbf C^n$中超曲面补的基本群","authors":"V. Kulikov","doi":"10.1070/IM1992V038N02ABEH002205","DOIUrl":null,"url":null,"abstract":"Let be a complex algebraic hypersurface in not passing through the point . The generators of the fundamental group and the relations among them are described in terms of the real cone over with apex at . This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in . A new proof of Zariski's conjecture about commutativity of the fundamental group for a projective nodal curve is given in the second part of the paper based on the description of the generators and the relations in the group obtained in the first part.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A HYPERSURFACE IN $ \\\\mathbf C^n$\",\"authors\":\"V. Kulikov\",\"doi\":\"10.1070/IM1992V038N02ABEH002205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a complex algebraic hypersurface in not passing through the point . The generators of the fundamental group and the relations among them are described in terms of the real cone over with apex at . This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in . A new proof of Zariski's conjecture about commutativity of the fundamental group for a projective nodal curve is given in the second part of the paper based on the description of the generators and the relations in the group obtained in the first part.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1992V038N02ABEH002205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V038N02ABEH002205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设为不经过该点的复代数超曲面。用顶点为的实锥面来描述基群的产生子及其相互之间的关系。这种描述是对一个结的基群的Wirtinger共表示的代数情形的推广。本文第二部分在第一部分所得到的关于射影节点曲线基本群交换性的产生子和群内关系的描述的基础上,给出了Zariski猜想的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A HYPERSURFACE IN $ \mathbf C^n$
Let be a complex algebraic hypersurface in not passing through the point . The generators of the fundamental group and the relations among them are described in terms of the real cone over with apex at . This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in . A new proof of Zariski's conjecture about commutativity of the fundamental group for a projective nodal curve is given in the second part of the paper based on the description of the generators and the relations in the group obtained in the first part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信