海洋浅层脆弱地层生物可降解含纤维钻井液的过滤

Kazuma Takahashi, S. Naganawa, Elvar K Bjarkason, R. Mukai
{"title":"海洋浅层脆弱地层生物可降解含纤维钻井液的过滤","authors":"Kazuma Takahashi, S. Naganawa, Elvar K Bjarkason, R. Mukai","doi":"10.4043/32274-ms","DOIUrl":null,"url":null,"abstract":"\n Fiber-containing drilling fluids are expected to improve hole cleaning efficiency and have filtration properties that help to form a strong mud cake on the borehole wall. The objective of this study is to evaluate the filtration properties of drilling fluids containing a novel biodegradable polymer fiber.\n The novel 100% bio-based polymer, named PHBH (TM), biodegrades easily in a seawater environment. The filtration properties of drilling fluids containing PHBH fibers were investigated through static filtration tests using an API (LPLT) filter press and a high-temperature and high-pressure (HPHT) filter press. The HPHT tests were conducted at 93°C (200°F). The tested base fluids contained 1.5wt% of bentonite or sepiolite clay, and 0.1 to 0.4wt% of polyanionic cellulose (PAC-HG) as a viscosifier. Sepiolite was considered since it is more thermally stable than bentonite.\n From the results of API and HPHT filtration tests, adding 0.4wt% PHBH fibers reduced the amount of filtrate by approximately 5 to 7%, and the thicknesses of mud cake by approximately 24 to 34%. Among the 3, 5, 10, and 14 mm-long fibers tested, 14 mm long fibers resulted in the maximum reductions in filtrate and mud-cake thickness. Analysis of the solid concentration in the suggested that thin and strong mud cakes might form by adding the PHBH fibers for both bentonite- and sepiolite-based fluids.\n Compared to the existing commercial fiber additives, the novelty of application of the new biodegradable fiber-containing drilling fluids to prevention of lost circulation or borehole wall strengthening in offshore shallow weak formations is highly environmentally-friendly for sustainable oil and gas developments. The biodegradable fiber-containing fluids can be applied in various uses like completion fluid, cementing spacer, etc.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filtration of Biodegradable Fiber-Containing Drilling Fluids for Offshore Shallow Weak Formations\",\"authors\":\"Kazuma Takahashi, S. Naganawa, Elvar K Bjarkason, R. Mukai\",\"doi\":\"10.4043/32274-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fiber-containing drilling fluids are expected to improve hole cleaning efficiency and have filtration properties that help to form a strong mud cake on the borehole wall. The objective of this study is to evaluate the filtration properties of drilling fluids containing a novel biodegradable polymer fiber.\\n The novel 100% bio-based polymer, named PHBH (TM), biodegrades easily in a seawater environment. The filtration properties of drilling fluids containing PHBH fibers were investigated through static filtration tests using an API (LPLT) filter press and a high-temperature and high-pressure (HPHT) filter press. The HPHT tests were conducted at 93°C (200°F). The tested base fluids contained 1.5wt% of bentonite or sepiolite clay, and 0.1 to 0.4wt% of polyanionic cellulose (PAC-HG) as a viscosifier. Sepiolite was considered since it is more thermally stable than bentonite.\\n From the results of API and HPHT filtration tests, adding 0.4wt% PHBH fibers reduced the amount of filtrate by approximately 5 to 7%, and the thicknesses of mud cake by approximately 24 to 34%. Among the 3, 5, 10, and 14 mm-long fibers tested, 14 mm long fibers resulted in the maximum reductions in filtrate and mud-cake thickness. Analysis of the solid concentration in the suggested that thin and strong mud cakes might form by adding the PHBH fibers for both bentonite- and sepiolite-based fluids.\\n Compared to the existing commercial fiber additives, the novelty of application of the new biodegradable fiber-containing drilling fluids to prevention of lost circulation or borehole wall strengthening in offshore shallow weak formations is highly environmentally-friendly for sustainable oil and gas developments. The biodegradable fiber-containing fluids can be applied in various uses like completion fluid, cementing spacer, etc.\",\"PeriodicalId\":196855,\"journal\":{\"name\":\"Day 2 Tue, May 02, 2023\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, May 02, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/32274-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, May 02, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/32274-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

含纤维钻井液有望提高井眼清洁效率,并具有过滤特性,有助于在井壁上形成坚固的泥浆饼。本研究的目的是评价含有一种新型可生物降解聚合物纤维的钻井液的过滤性能。这种新型的100%生物基聚合物被命名为PHBH (TM),在海水环境中很容易生物降解。通过API (LPLT)压滤机和高温高压(HPHT)压滤机的静态过滤试验,研究了含PHBH纤维钻井液的过滤性能。高温高压试验在93°C(200°F)下进行。测试的基础液中含有1.5wt%的膨润土或海泡石粘土,以及0.1 ~ 0.4wt%的聚阴离子纤维素(PAC-HG)作为增粘剂。海泡石被认为是由于它比膨润土更热稳定。从API和HPHT过滤测试的结果来看,添加0.4wt% PHBH纤维可使滤液量减少约5%至7%,泥饼厚度减少约24%至34%。在测试的3、5、10和14 mm长的纤维中,14 mm长的纤维对滤液和泥饼厚度的降低最大。固相浓度分析表明,在膨润土基和海泡石基流体中加入PHBH纤维均可形成薄而强的泥饼。与现有的商用纤维添加剂相比,新型可生物降解纤维钻井液的新颖之处在于,它可以在海上浅层脆弱地层中防止漏失或加强井壁,对可持续油气开发非常环保。生物可降解含纤维流体可用于完井液、固井隔离液等多种用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filtration of Biodegradable Fiber-Containing Drilling Fluids for Offshore Shallow Weak Formations
Fiber-containing drilling fluids are expected to improve hole cleaning efficiency and have filtration properties that help to form a strong mud cake on the borehole wall. The objective of this study is to evaluate the filtration properties of drilling fluids containing a novel biodegradable polymer fiber. The novel 100% bio-based polymer, named PHBH (TM), biodegrades easily in a seawater environment. The filtration properties of drilling fluids containing PHBH fibers were investigated through static filtration tests using an API (LPLT) filter press and a high-temperature and high-pressure (HPHT) filter press. The HPHT tests were conducted at 93°C (200°F). The tested base fluids contained 1.5wt% of bentonite or sepiolite clay, and 0.1 to 0.4wt% of polyanionic cellulose (PAC-HG) as a viscosifier. Sepiolite was considered since it is more thermally stable than bentonite. From the results of API and HPHT filtration tests, adding 0.4wt% PHBH fibers reduced the amount of filtrate by approximately 5 to 7%, and the thicknesses of mud cake by approximately 24 to 34%. Among the 3, 5, 10, and 14 mm-long fibers tested, 14 mm long fibers resulted in the maximum reductions in filtrate and mud-cake thickness. Analysis of the solid concentration in the suggested that thin and strong mud cakes might form by adding the PHBH fibers for both bentonite- and sepiolite-based fluids. Compared to the existing commercial fiber additives, the novelty of application of the new biodegradable fiber-containing drilling fluids to prevention of lost circulation or borehole wall strengthening in offshore shallow weak formations is highly environmentally-friendly for sustainable oil and gas developments. The biodegradable fiber-containing fluids can be applied in various uses like completion fluid, cementing spacer, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信