基于文本行检测的多方向中文关键词定位器

Pei Xu, Shan Huang, Hongzhen Wang, Hao Song, Shen Huang, Qi Ju
{"title":"基于文本行检测的多方向中文关键词定位器","authors":"Pei Xu, Shan Huang, Hongzhen Wang, Hao Song, Shen Huang, Qi Ju","doi":"10.1109/icdar.2019.00112","DOIUrl":null,"url":null,"abstract":"Chinese keyword spotting is a challenging task as there is no visual blank for Chinese words. Different from English words which are split naturally by visual blanks, Chinese words are generally split only by semantic information. In this paper, we propose a new Chinese keyword spotter for natural images, which is inspired by Mask R-CNN. We propose to predict the keyword masks guided by text line detection. Firstly, proposals of text lines are generated by Faster R-CNN; Then, text line masks and keyword masks are predicted by segmentation in the proposals. In this way, the text lines and keywords are predicted in parallel. We create two Chinese keyword datasets based on RCTW-17 and ICPR MTWI2018 to verify the effectiveness of our method.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-oriented Chinese Keyword Spotter Guided by Text Line Detection\",\"authors\":\"Pei Xu, Shan Huang, Hongzhen Wang, Hao Song, Shen Huang, Qi Ju\",\"doi\":\"10.1109/icdar.2019.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese keyword spotting is a challenging task as there is no visual blank for Chinese words. Different from English words which are split naturally by visual blanks, Chinese words are generally split only by semantic information. In this paper, we propose a new Chinese keyword spotter for natural images, which is inspired by Mask R-CNN. We propose to predict the keyword masks guided by text line detection. Firstly, proposals of text lines are generated by Faster R-CNN; Then, text line masks and keyword masks are predicted by segmentation in the proposals. In this way, the text lines and keywords are predicted in parallel. We create two Chinese keyword datasets based on RCTW-17 and ICPR MTWI2018 to verify the effectiveness of our method.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icdar.2019.00112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdar.2019.00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中文关键词识别是一项具有挑战性的任务,因为中文单词没有视觉空白。不同于英语词汇是通过视觉空白自然分割的,汉语词汇一般只通过语义信息进行分割。在本文中,我们提出了一种新的自然图像中文关键词识别器,该识别器的灵感来自Mask R-CNN。我们建议通过文本行检测来预测关键字掩码。首先,使用Faster R-CNN生成文本行建议;然后,对文本行掩码和关键字掩码进行分割预测。通过这种方式,文本行和关键字被并行预测。我们基于RCTW-17和ICPR MTWI2018创建了两个中文关键字数据集来验证我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-oriented Chinese Keyword Spotter Guided by Text Line Detection
Chinese keyword spotting is a challenging task as there is no visual blank for Chinese words. Different from English words which are split naturally by visual blanks, Chinese words are generally split only by semantic information. In this paper, we propose a new Chinese keyword spotter for natural images, which is inspired by Mask R-CNN. We propose to predict the keyword masks guided by text line detection. Firstly, proposals of text lines are generated by Faster R-CNN; Then, text line masks and keyword masks are predicted by segmentation in the proposals. In this way, the text lines and keywords are predicted in parallel. We create two Chinese keyword datasets based on RCTW-17 and ICPR MTWI2018 to verify the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信