基于模拟退火的神经网络在遥感图像分类中的应用

Xiaoqiong Pang, L. Chen, Wenjun Chen
{"title":"基于模拟退火的神经网络在遥感图像分类中的应用","authors":"Xiaoqiong Pang, L. Chen, Wenjun Chen","doi":"10.1109/WCICA.2006.1712890","DOIUrl":null,"url":null,"abstract":"The performance was unstable when using BP neural network to classify remote sensing images. Applying simulated annealing idea, an improved BP neural network with momentum was put forward. The improved network could self-adapt to choose momentum parameters according to annealing temperature, which was able to make the network escape from local minimum spots and converge stably. The experiments show that improved network converges more easily, its performance is steady, it has the preponderances of gradient descent with momentum and the standard BP neural network. Classification accuracy of remote sensing image is comparatively high. This method has practical application value","PeriodicalId":375135,"journal":{"name":"2006 6th World Congress on Intelligent Control and Automation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of Neural Network Based on Simulated Annealing to Classification of Remote Sensing Image\",\"authors\":\"Xiaoqiong Pang, L. Chen, Wenjun Chen\",\"doi\":\"10.1109/WCICA.2006.1712890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance was unstable when using BP neural network to classify remote sensing images. Applying simulated annealing idea, an improved BP neural network with momentum was put forward. The improved network could self-adapt to choose momentum parameters according to annealing temperature, which was able to make the network escape from local minimum spots and converge stably. The experiments show that improved network converges more easily, its performance is steady, it has the preponderances of gradient descent with momentum and the standard BP neural network. Classification accuracy of remote sensing image is comparatively high. This method has practical application value\",\"PeriodicalId\":375135,\"journal\":{\"name\":\"2006 6th World Congress on Intelligent Control and Automation\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 6th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2006.1712890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 6th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2006.1712890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用BP神经网络对遥感图像进行分类时,性能不稳定。应用模拟退火思想,提出了一种改进的带动量BP神经网络。改进后的网络能够根据退火温度自适应选择动量参数,使网络能够摆脱局部最小点,稳定收敛。实验表明,改进后的神经网络更容易收敛,性能稳定,具有带动量梯度下降法和标准BP神经网络的优势。遥感影像的分类精度比较高。该方法具有实际应用价值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Neural Network Based on Simulated Annealing to Classification of Remote Sensing Image
The performance was unstable when using BP neural network to classify remote sensing images. Applying simulated annealing idea, an improved BP neural network with momentum was put forward. The improved network could self-adapt to choose momentum parameters according to annealing temperature, which was able to make the network escape from local minimum spots and converge stably. The experiments show that improved network converges more easily, its performance is steady, it has the preponderances of gradient descent with momentum and the standard BP neural network. Classification accuracy of remote sensing image is comparatively high. This method has practical application value
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信