基于同步压缩小波变换和阶数分析的风电轴承故障诊断

Jun Guo, Xiaoxian Wang, C. Zhai, Jiahao Niu, Siliang Lu
{"title":"基于同步压缩小波变换和阶数分析的风电轴承故障诊断","authors":"Jun Guo, Xiaoxian Wang, C. Zhai, Jiahao Niu, Siliang Lu","doi":"10.1109/ICIEA.2019.8833879","DOIUrl":null,"url":null,"abstract":"In this study, a two-steps method is proposed to diagnose the wind turbine bearing fault under the variable speed condition without using a tachometer. In the first step, the synchrosqueezing wavelet transform is used to process the bearing vibration signal to extract the rotating phase from the time-frequency plane. In the second step, the original time-domain vibration signal is resampled according to the extracted rotating phase, and then the bearing fault indicator can be recognized in the envelope order spectrum for fault diagnosis. The effectiveness of the proposed method is validated on a direct-drive wind turbine test rig in which a fault bearing is installed on a permanent magnet synchronous generator.","PeriodicalId":311302,"journal":{"name":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis\",\"authors\":\"Jun Guo, Xiaoxian Wang, C. Zhai, Jiahao Niu, Siliang Lu\",\"doi\":\"10.1109/ICIEA.2019.8833879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a two-steps method is proposed to diagnose the wind turbine bearing fault under the variable speed condition without using a tachometer. In the first step, the synchrosqueezing wavelet transform is used to process the bearing vibration signal to extract the rotating phase from the time-frequency plane. In the second step, the original time-domain vibration signal is resampled according to the extracted rotating phase, and then the bearing fault indicator can be recognized in the envelope order spectrum for fault diagnosis. The effectiveness of the proposed method is validated on a direct-drive wind turbine test rig in which a fault bearing is installed on a permanent magnet synchronous generator.\",\"PeriodicalId\":311302,\"journal\":{\"name\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2019.8833879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2019.8833879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本研究中,提出了一种不使用转速表的两步法来诊断变速工况下的风力发电机轴承故障。第一步,采用同步压缩小波变换对轴承振动信号进行处理,从时频平面提取轴承的旋转相位;第二步,根据提取的旋转相位对原始时域振动信号进行重采样,在包络阶谱中识别轴承故障指示器,进行故障诊断。在永磁同步发电机上安装故障轴承的直驱风力机试验台上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis
In this study, a two-steps method is proposed to diagnose the wind turbine bearing fault under the variable speed condition without using a tachometer. In the first step, the synchrosqueezing wavelet transform is used to process the bearing vibration signal to extract the rotating phase from the time-frequency plane. In the second step, the original time-domain vibration signal is resampled according to the extracted rotating phase, and then the bearing fault indicator can be recognized in the envelope order spectrum for fault diagnosis. The effectiveness of the proposed method is validated on a direct-drive wind turbine test rig in which a fault bearing is installed on a permanent magnet synchronous generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信