电网故障时基于DFIG的BESS风电机组电压频率稳定性分析

Ankur Adhikary, Niloy Goswami, Kaushik Barua, Ratul Dey, Arindam Barman, M. A. Shawon
{"title":"电网故障时基于DFIG的BESS风电机组电压频率稳定性分析","authors":"Ankur Adhikary, Niloy Goswami, Kaushik Barua, Ratul Dey, Arindam Barman, M. A. Shawon","doi":"10.1109/ICICCSP53532.2022.9862447","DOIUrl":null,"url":null,"abstract":"The ease of Doubly-Fed Induction Generator (DFIG) based wind turbines is largely deployed due to their variable speed feature and hence influencing system dynamics. However, owing to grid faults, the output power fluctuation in the DFIG wind turbine system brings a major concern to power system stability. In this paper, the grid voltage and frequency stability of the wind power system investigates different cases such as DFIG and the approach of a Battery Energy Storage System (BESS). Designing of a wind turbine model including Rotor Side Controller (RSC) and Grid Side Controller (GSC) and connected to the grid. An equivalent BESS is introduced in the power system model and connected to the grid through a three-phase inverter. The BESS system is designed to stabilize the frequency at a constant value with controlled active power also; voltage is controlled by reactive power. To design the wind turbine only active power is considered in this specific work. Therefore, the system performance has improved after including BESS. The performance analysis is observed by simulation work through “PSCAD/EMTDC” professional software, which is the most realistic and well-organized software, especially for power system analysis.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of a DFIG Based Wind Turbine with BESS System for Voltage and Frequency Stability during Grid Fault\",\"authors\":\"Ankur Adhikary, Niloy Goswami, Kaushik Barua, Ratul Dey, Arindam Barman, M. A. Shawon\",\"doi\":\"10.1109/ICICCSP53532.2022.9862447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ease of Doubly-Fed Induction Generator (DFIG) based wind turbines is largely deployed due to their variable speed feature and hence influencing system dynamics. However, owing to grid faults, the output power fluctuation in the DFIG wind turbine system brings a major concern to power system stability. In this paper, the grid voltage and frequency stability of the wind power system investigates different cases such as DFIG and the approach of a Battery Energy Storage System (BESS). Designing of a wind turbine model including Rotor Side Controller (RSC) and Grid Side Controller (GSC) and connected to the grid. An equivalent BESS is introduced in the power system model and connected to the grid through a three-phase inverter. The BESS system is designed to stabilize the frequency at a constant value with controlled active power also; voltage is controlled by reactive power. To design the wind turbine only active power is considered in this specific work. Therefore, the system performance has improved after including BESS. The performance analysis is observed by simulation work through “PSCAD/EMTDC” professional software, which is the most realistic and well-organized software, especially for power system analysis.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于双馈感应发电机(DFIG)的风力涡轮机的易用性很大程度上是由于其变速特性,从而影响系统动力学。然而,由于电网故障,DFIG风电机组系统的输出功率波动给电力系统的稳定带来了很大的担忧。本文研究了不同情况下风电系统的电压和频率稳定性,如DFIG和电池储能系统(BESS)的方法。设计了包含转子侧控制器(RSC)和电网侧控制器(GSC)并并网的风力机模型。在电力系统模型中引入等效BESS,并通过三相逆变器与电网连接。在有功功率可控的情况下,将BESS系统的频率稳定在一个恒定值;电压由无功功率控制。在本具体工作中只考虑了风力机有功功率的设计。因此,加入BESS后,系统性能得到了提高。性能分析通过“PSCAD/EMTDC”专业软件进行仿真观察,该软件是最真实、组织最完善的电力系统分析软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of a DFIG Based Wind Turbine with BESS System for Voltage and Frequency Stability during Grid Fault
The ease of Doubly-Fed Induction Generator (DFIG) based wind turbines is largely deployed due to their variable speed feature and hence influencing system dynamics. However, owing to grid faults, the output power fluctuation in the DFIG wind turbine system brings a major concern to power system stability. In this paper, the grid voltage and frequency stability of the wind power system investigates different cases such as DFIG and the approach of a Battery Energy Storage System (BESS). Designing of a wind turbine model including Rotor Side Controller (RSC) and Grid Side Controller (GSC) and connected to the grid. An equivalent BESS is introduced in the power system model and connected to the grid through a three-phase inverter. The BESS system is designed to stabilize the frequency at a constant value with controlled active power also; voltage is controlled by reactive power. To design the wind turbine only active power is considered in this specific work. Therefore, the system performance has improved after including BESS. The performance analysis is observed by simulation work through “PSCAD/EMTDC” professional software, which is the most realistic and well-organized software, especially for power system analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信