{"title":"电催化析氧反应","authors":"Guanyu Liu, J. Ager","doi":"10.1002/9783527830084.ch2","DOIUrl":null,"url":null,"abstract":"In the hybrid scheme, we consider the first layer of water explicitly, employing 27 H2O molecules, and the rest of solvent is considered implicitly. Using this approach, we determine the potential of the surface with different coverages. The work function can be extracted from the energy of Fermi level (E!\"#$%) and electrostatic potential as Φ = E!\"# − E!\"#$%. We determine voltage as: V!!\" = Φ− 4.44, where -4.44 eV is the chemical potential of the standard hydrogen electrode. By changing the charge at the interface, we can decrease/increase the voltage by adding/subtracting electrons respectively.","PeriodicalId":406082,"journal":{"name":"Photo‐ and Electro‐Catalytic Processes","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrocatalytic Oxygen Evolution Reaction\",\"authors\":\"Guanyu Liu, J. Ager\",\"doi\":\"10.1002/9783527830084.ch2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the hybrid scheme, we consider the first layer of water explicitly, employing 27 H2O molecules, and the rest of solvent is considered implicitly. Using this approach, we determine the potential of the surface with different coverages. The work function can be extracted from the energy of Fermi level (E!\\\"#$%) and electrostatic potential as Φ = E!\\\"# − E!\\\"#$%. We determine voltage as: V!!\\\" = Φ− 4.44, where -4.44 eV is the chemical potential of the standard hydrogen electrode. By changing the charge at the interface, we can decrease/increase the voltage by adding/subtracting electrons respectively.\",\"PeriodicalId\":406082,\"journal\":{\"name\":\"Photo‐ and Electro‐Catalytic Processes\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photo‐ and Electro‐Catalytic Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9783527830084.ch2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photo‐ and Electro‐Catalytic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9783527830084.ch2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在混合方案中,我们明确地考虑了第一层水,使用了27个H2O分子,而其余的溶剂被隐式地考虑。利用这种方法,我们确定了具有不同覆盖度的表面的潜力。可以从费米能级的能量(E! #$%)和静电势中提取功函数为Φ = E!# - e !”#$%。我们确定电压为:V!!= Φ−4.44,其中-4.44 eV为标准氢电极的化学势。通过改变界面处的电荷,我们可以分别通过增加/减少电子来减小/增加电压。
In the hybrid scheme, we consider the first layer of water explicitly, employing 27 H2O molecules, and the rest of solvent is considered implicitly. Using this approach, we determine the potential of the surface with different coverages. The work function can be extracted from the energy of Fermi level (E!"#$%) and electrostatic potential as Φ = E!"# − E!"#$%. We determine voltage as: V!!" = Φ− 4.44, where -4.44 eV is the chemical potential of the standard hydrogen electrode. By changing the charge at the interface, we can decrease/increase the voltage by adding/subtracting electrons respectively.