规则诱导学习集低方差k-Fold交叉验证的局限性

M. Vasinek, J. Platoš, V. Snás̃el
{"title":"规则诱导学习集低方差k-Fold交叉验证的局限性","authors":"M. Vasinek, J. Platoš, V. Snás̃el","doi":"10.1109/INCoS.2016.51","DOIUrl":null,"url":null,"abstract":"One of the standard methods in a verification of predictive models is a cross validation. In this paper, we examined prediction stability of simple learning set of rules classifier under the k-fold cross validation. We described a class of rules that can pass the k-fold cross validation with zero or a very low variance in accuracy of prediction. The lossless prediction of correct/incorrect assignment distribution theorem, given by the so-called k-fold stable rules, is established, and its implications are discussed and applied in the experiments.","PeriodicalId":102056,"journal":{"name":"2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Limitations on Low Variance k-Fold Cross Validation in Learning Set of Rules Inducers\",\"authors\":\"M. Vasinek, J. Platoš, V. Snás̃el\",\"doi\":\"10.1109/INCoS.2016.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the standard methods in a verification of predictive models is a cross validation. In this paper, we examined prediction stability of simple learning set of rules classifier under the k-fold cross validation. We described a class of rules that can pass the k-fold cross validation with zero or a very low variance in accuracy of prediction. The lossless prediction of correct/incorrect assignment distribution theorem, given by the so-called k-fold stable rules, is established, and its implications are discussed and applied in the experiments.\",\"PeriodicalId\":102056,\"journal\":{\"name\":\"2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS)\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCoS.2016.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2016.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

交叉验证是验证预测模型的标准方法之一。本文研究了简单学习规则集分类器在k-fold交叉验证下的预测稳定性。我们描述了一类可以通过k-fold交叉验证的规则,预测精度的方差为零或非常低。建立了由k-fold稳定规则给出的正确/错误分配分布定理的无损预测,讨论了其含义并在实验中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limitations on Low Variance k-Fold Cross Validation in Learning Set of Rules Inducers
One of the standard methods in a verification of predictive models is a cross validation. In this paper, we examined prediction stability of simple learning set of rules classifier under the k-fold cross validation. We described a class of rules that can pass the k-fold cross validation with zero or a very low variance in accuracy of prediction. The lossless prediction of correct/incorrect assignment distribution theorem, given by the so-called k-fold stable rules, is established, and its implications are discussed and applied in the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信