S. Hara, T. Moen, K. Bennet, Kendall H. Lee, Jonathan R. Tomshine
{"title":"掺硼金刚石电极上非金刚石碳的去除及评价","authors":"S. Hara, T. Moen, K. Bennet, Kendall H. Lee, Jonathan R. Tomshine","doi":"10.1109/MeMeA.2017.7985860","DOIUrl":null,"url":null,"abstract":"Boron-doped diamond electrodes possess many qualities that make them promising candidates for chronic in vivo neurochemical sensors. The fabrication process for boron-doped diamond films produces additional forms of non-diamond carbon that can confound electrochemical performance and neurochemical detection. Various removal treatments have been implemented for other applications of boron-doped diamond, but they have not been very well evaluated or compared. In this work, we present the use of electrode double-layer capacitance and quinone surface coverage to evaluate the effectiveness of three different non-diamond carbon removal treatments on boron-doped diamond microelectrodes designed for neurochemical detection. The results indicate that sulfuric acid cycling post-deposition and incorporation of an atomic hydrogen cool-down step into the deposition process reduce the amount of surface non-diamond carbon contaminating boron-doped diamond electrodes.","PeriodicalId":235051,"journal":{"name":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal and evaluation of non-diamond carbon on boron-doped diamond electrodes\",\"authors\":\"S. Hara, T. Moen, K. Bennet, Kendall H. Lee, Jonathan R. Tomshine\",\"doi\":\"10.1109/MeMeA.2017.7985860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boron-doped diamond electrodes possess many qualities that make them promising candidates for chronic in vivo neurochemical sensors. The fabrication process for boron-doped diamond films produces additional forms of non-diamond carbon that can confound electrochemical performance and neurochemical detection. Various removal treatments have been implemented for other applications of boron-doped diamond, but they have not been very well evaluated or compared. In this work, we present the use of electrode double-layer capacitance and quinone surface coverage to evaluate the effectiveness of three different non-diamond carbon removal treatments on boron-doped diamond microelectrodes designed for neurochemical detection. The results indicate that sulfuric acid cycling post-deposition and incorporation of an atomic hydrogen cool-down step into the deposition process reduce the amount of surface non-diamond carbon contaminating boron-doped diamond electrodes.\",\"PeriodicalId\":235051,\"journal\":{\"name\":\"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2017.7985860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2017.7985860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Removal and evaluation of non-diamond carbon on boron-doped diamond electrodes
Boron-doped diamond electrodes possess many qualities that make them promising candidates for chronic in vivo neurochemical sensors. The fabrication process for boron-doped diamond films produces additional forms of non-diamond carbon that can confound electrochemical performance and neurochemical detection. Various removal treatments have been implemented for other applications of boron-doped diamond, but they have not been very well evaluated or compared. In this work, we present the use of electrode double-layer capacitance and quinone surface coverage to evaluate the effectiveness of three different non-diamond carbon removal treatments on boron-doped diamond microelectrodes designed for neurochemical detection. The results indicate that sulfuric acid cycling post-deposition and incorporation of an atomic hydrogen cool-down step into the deposition process reduce the amount of surface non-diamond carbon contaminating boron-doped diamond electrodes.