用于目标识别的原始雷达回波深度学习

Tian Tian Fan, Che Liu, T. Cui
{"title":"用于目标识别的原始雷达回波深度学习","authors":"Tian Tian Fan, Che Liu, T. Cui","doi":"10.1109/COMPEM.2018.8496666","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) based classification approaches are commonly used methods for automatic target recognition. However, SAR imaging requires complex two-dimensional matched filtering and interpolation algorithms. In this paper, we propose deep learning technology for automatic target recognition based on raw radar echoes instead of SAR images. A modern convolutional neural network (CNN) model is trained directly by radar-echo training data set, and is evaluated on the testing data set. The experimental results show that the proposed method could achieve high accuracy and efficiency for the target recognition.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning of Raw Radar Echoes for Target Recognition\",\"authors\":\"Tian Tian Fan, Che Liu, T. Cui\",\"doi\":\"10.1109/COMPEM.2018.8496666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) based classification approaches are commonly used methods for automatic target recognition. However, SAR imaging requires complex two-dimensional matched filtering and interpolation algorithms. In this paper, we propose deep learning technology for automatic target recognition based on raw radar echoes instead of SAR images. A modern convolutional neural network (CNN) model is trained directly by radar-echo training data set, and is evaluated on the testing data set. The experimental results show that the proposed method could achieve high accuracy and efficiency for the target recognition.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于合成孔径雷达(SAR)的分类方法是目前常用的目标自动识别方法。然而,SAR成像需要复杂的二维匹配滤波和插值算法。在本文中,我们提出了一种基于原始雷达回波而非SAR图像的深度学习自动目标识别技术。利用雷达回波训练数据集直接训练现代卷积神经网络(CNN)模型,并在测试数据集上进行评估。实验结果表明,该方法具有较高的目标识别精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning of Raw Radar Echoes for Target Recognition
Synthetic aperture radar (SAR) based classification approaches are commonly used methods for automatic target recognition. However, SAR imaging requires complex two-dimensional matched filtering and interpolation algorithms. In this paper, we propose deep learning technology for automatic target recognition based on raw radar echoes instead of SAR images. A modern convolutional neural network (CNN) model is trained directly by radar-echo training data set, and is evaluated on the testing data set. The experimental results show that the proposed method could achieve high accuracy and efficiency for the target recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信