模型集验证的概率方法

T. Miyazato, T. Zhou, S. Hara
{"title":"模型集验证的概率方法","authors":"T. Miyazato, T. Zhou, S. Hara","doi":"10.1109/CDC.1999.831289","DOIUrl":null,"url":null,"abstract":"We introduce a probabilistic measure named model set unfalsified probability (MSUP) for model set validation, where the model set is described by an LFT (linear fractional transformation) form. We derive upper and lower bounds of MSUP and show that the lower bound computation can be reduced to an LMI-based convex optimization. A numerical example confirms that the probabilistic approach more appropriately evaluates the suitability of a model set in robust controller design than deterministic approaches.","PeriodicalId":137513,"journal":{"name":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A probabilistic approach to model set validation\",\"authors\":\"T. Miyazato, T. Zhou, S. Hara\",\"doi\":\"10.1109/CDC.1999.831289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a probabilistic measure named model set unfalsified probability (MSUP) for model set validation, where the model set is described by an LFT (linear fractional transformation) form. We derive upper and lower bounds of MSUP and show that the lower bound computation can be reduced to an LMI-based convex optimization. A numerical example confirms that the probabilistic approach more appropriately evaluates the suitability of a model set in robust controller design than deterministic approaches.\",\"PeriodicalId\":137513,\"journal\":{\"name\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1999.831289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1999.831289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们为模型集验证引入了一种称为模型集非证伪概率(MSUP)的概率度量,其中模型集由LFT(线性分数变换)形式描述。我们导出了MSUP的上界和下界,并证明下界计算可以简化为基于lmi的凸优化。数值算例表明,概率方法比确定性方法更适合于鲁棒控制器设计中模型集的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A probabilistic approach to model set validation
We introduce a probabilistic measure named model set unfalsified probability (MSUP) for model set validation, where the model set is described by an LFT (linear fractional transformation) form. We derive upper and lower bounds of MSUP and show that the lower bound computation can be reduced to an LMI-based convex optimization. A numerical example confirms that the probabilistic approach more appropriately evaluates the suitability of a model set in robust controller design than deterministic approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信