Gabriel Agamennoni, Stewart Worrall, James R. Ward, E. Nebot
{"title":"鲁棒非线性平滑车辆状态估计","authors":"Gabriel Agamennoni, Stewart Worrall, James R. Ward, E. Nebot","doi":"10.1109/IVS.2013.6629464","DOIUrl":null,"url":null,"abstract":"This paper presents a robust, non-linear smoothing algorithm and develops the theory behind it. This algorithm is extremely robust to outliers and missing data and handles state-dependent noise. Implementing it is straightforward as it consists mainly of two sub-routines: (a) the Rauch-Tung-Striebel recursions, or Kalman smoother; and (b) a backtracking line search strategy. The computational load grows linearly with the number of data because the algorithm preserves the underlying structure of the problem. Global convergence to a local optimum is guaranteed, under mild assumptions.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust non-linear smoothing for vehicle state estimation\",\"authors\":\"Gabriel Agamennoni, Stewart Worrall, James R. Ward, E. Nebot\",\"doi\":\"10.1109/IVS.2013.6629464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust, non-linear smoothing algorithm and develops the theory behind it. This algorithm is extremely robust to outliers and missing data and handles state-dependent noise. Implementing it is straightforward as it consists mainly of two sub-routines: (a) the Rauch-Tung-Striebel recursions, or Kalman smoother; and (b) a backtracking line search strategy. The computational load grows linearly with the number of data because the algorithm preserves the underlying structure of the problem. Global convergence to a local optimum is guaranteed, under mild assumptions.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2013.6629464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust non-linear smoothing for vehicle state estimation
This paper presents a robust, non-linear smoothing algorithm and develops the theory behind it. This algorithm is extremely robust to outliers and missing data and handles state-dependent noise. Implementing it is straightforward as it consists mainly of two sub-routines: (a) the Rauch-Tung-Striebel recursions, or Kalman smoother; and (b) a backtracking line search strategy. The computational load grows linearly with the number of data because the algorithm preserves the underlying structure of the problem. Global convergence to a local optimum is guaranteed, under mild assumptions.