{"title":"SIPT:推测索引,物理标记缓存","authors":"Tianhao Zheng, Haishan Zhu, M. Erez","doi":"10.1109/HPCA.2018.00020","DOIUrl":null,"url":null,"abstract":"First-level (L1) data cache access latency is critical to performance because it services the vast majority of loads and stores. To keep L1 latency low while ensuring low-complexity and simple-to-verify operation, current processors most-typically utilize a virtually-indexed physically-tagged (VIPT) cache architecture. While VIPT caches decrease latency by proceeding with cache access and address translation concurrently, each cache way is constrained by the size of a virtual page. Thus, larger L1 caches are highly-associative, which degrades their access latency and energy. We propose speculatively-indexed physically-tagged (SIPT) caches to enable simultaneously larger, faster, and more efficient L1 caches. A SIPT cache speculates on the value of a few address bits beyond the page offset concurrently with address translation, maintaining the overall safe and reliable architecture of a VIPT cache while eliminating the VIPT design constraints. SIPT is a purely microarchitectural approach that can be used with any software and for all accesses. We evaluate SIPT with simulations of applications under standard Linux. SIPT improves performance by 8.1% on average and reduces total cache-hierarchy energy by 15.6%.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"SIPT: Speculatively Indexed, Physically Tagged Caches\",\"authors\":\"Tianhao Zheng, Haishan Zhu, M. Erez\",\"doi\":\"10.1109/HPCA.2018.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First-level (L1) data cache access latency is critical to performance because it services the vast majority of loads and stores. To keep L1 latency low while ensuring low-complexity and simple-to-verify operation, current processors most-typically utilize a virtually-indexed physically-tagged (VIPT) cache architecture. While VIPT caches decrease latency by proceeding with cache access and address translation concurrently, each cache way is constrained by the size of a virtual page. Thus, larger L1 caches are highly-associative, which degrades their access latency and energy. We propose speculatively-indexed physically-tagged (SIPT) caches to enable simultaneously larger, faster, and more efficient L1 caches. A SIPT cache speculates on the value of a few address bits beyond the page offset concurrently with address translation, maintaining the overall safe and reliable architecture of a VIPT cache while eliminating the VIPT design constraints. SIPT is a purely microarchitectural approach that can be used with any software and for all accesses. We evaluate SIPT with simulations of applications under standard Linux. SIPT improves performance by 8.1% on average and reduces total cache-hierarchy energy by 15.6%.\",\"PeriodicalId\":154694,\"journal\":{\"name\":\"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2018.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First-level (L1) data cache access latency is critical to performance because it services the vast majority of loads and stores. To keep L1 latency low while ensuring low-complexity and simple-to-verify operation, current processors most-typically utilize a virtually-indexed physically-tagged (VIPT) cache architecture. While VIPT caches decrease latency by proceeding with cache access and address translation concurrently, each cache way is constrained by the size of a virtual page. Thus, larger L1 caches are highly-associative, which degrades their access latency and energy. We propose speculatively-indexed physically-tagged (SIPT) caches to enable simultaneously larger, faster, and more efficient L1 caches. A SIPT cache speculates on the value of a few address bits beyond the page offset concurrently with address translation, maintaining the overall safe and reliable architecture of a VIPT cache while eliminating the VIPT design constraints. SIPT is a purely microarchitectural approach that can be used with any software and for all accesses. We evaluate SIPT with simulations of applications under standard Linux. SIPT improves performance by 8.1% on average and reduces total cache-hierarchy energy by 15.6%.