基于范例的语音识别稀疏表示的凸包方法

Tara N. Sainath, D. Nahamoo, D. Kanevsky, B. Ramabhadran, P. Shah
{"title":"基于范例的语音识别稀疏表示的凸包方法","authors":"Tara N. Sainath, D. Nahamoo, D. Kanevsky, B. Ramabhadran, P. Shah","doi":"10.1109/ASRU.2011.6163906","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel exemplar based technique for classification problems where for every new test sample the classification model is re-estimated from a subset of relevant samples of the training data.We formulate the exemplar-based classification paradigm as a sparse representation (SR) problem, and explore the use of convex hull constraints to enforce both regularization and sparsity. Finally, we utilize the Extended Baum-Welch (EBW) optimization technique to solve the SR problem. We explore our proposed methodology on the TIMIT phonetic classification task, showing that our proposed method offers statistically significant improvements over common classification methods, and provides an accuracy of 82.9%, the best single-classifier number reported to date.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A convex hull approach to sparse representations for exemplar-based speech recognition\",\"authors\":\"Tara N. Sainath, D. Nahamoo, D. Kanevsky, B. Ramabhadran, P. Shah\",\"doi\":\"10.1109/ASRU.2011.6163906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel exemplar based technique for classification problems where for every new test sample the classification model is re-estimated from a subset of relevant samples of the training data.We formulate the exemplar-based classification paradigm as a sparse representation (SR) problem, and explore the use of convex hull constraints to enforce both regularization and sparsity. Finally, we utilize the Extended Baum-Welch (EBW) optimization technique to solve the SR problem. We explore our proposed methodology on the TIMIT phonetic classification task, showing that our proposed method offers statistically significant improvements over common classification methods, and provides an accuracy of 82.9%, the best single-classifier number reported to date.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们提出了一种新的基于示例的分类问题技术,其中对于每个新的测试样本,分类模型从训练数据的相关样本子集中重新估计。我们将基于示例的分类范式表述为一个稀疏表示(SR)问题,并探索使用凸包约束来强制正则化和稀疏性。最后,我们利用扩展Baum-Welch (EBW)优化技术来解决SR问题。我们在TIMIT语音分类任务上探索了我们提出的方法,表明我们提出的方法在统计上比常见的分类方法有显著的改进,并且提供了82.9%的准确率,这是迄今为止报道的最好的单分类器数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convex hull approach to sparse representations for exemplar-based speech recognition
In this paper, we propose a novel exemplar based technique for classification problems where for every new test sample the classification model is re-estimated from a subset of relevant samples of the training data.We formulate the exemplar-based classification paradigm as a sparse representation (SR) problem, and explore the use of convex hull constraints to enforce both regularization and sparsity. Finally, we utilize the Extended Baum-Welch (EBW) optimization technique to solve the SR problem. We explore our proposed methodology on the TIMIT phonetic classification task, showing that our proposed method offers statistically significant improvements over common classification methods, and provides an accuracy of 82.9%, the best single-classifier number reported to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信