基于模糊逻辑的超声速流动圆柱形管道突然膨胀壁面静压变化分析

K. Pandey
{"title":"基于模糊逻辑的超声速流动圆柱形管道突然膨胀壁面静压变化分析","authors":"K. Pandey","doi":"10.1109/ICMLC.2010.74","DOIUrl":null,"url":null,"abstract":"In this paper the analysis of wall static pressure variation has been done with fuzzy logic approach to have smooth flow in the duct. Here there are three area ratio choosen for the enlarged duct, 2.89, 6.00 and 10.00. The primary pressure ratio is taken as 2.65 and cavity aspect ratio is taken as 1 and 2. The study is analysed for length to diameter ratio of 1,2,4 and 6. The nozzles used are De Laval type and with a Mach number of 1.74 and 2.23 and conical nozzles having Mach numbers of 1.58 and 2.06. The analysis based on fuzzy logic theory indicates that the length to diameter ratio of 1 is sufficient for smooth flow development if only the basis of wall static pressure variations is considered.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Wall Static Pressure Variation in Sudden Expansion in Cylindrical Ducts with Supersonic Flow: A Fuzzy Logic Approach\",\"authors\":\"K. Pandey\",\"doi\":\"10.1109/ICMLC.2010.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the analysis of wall static pressure variation has been done with fuzzy logic approach to have smooth flow in the duct. Here there are three area ratio choosen for the enlarged duct, 2.89, 6.00 and 10.00. The primary pressure ratio is taken as 2.65 and cavity aspect ratio is taken as 1 and 2. The study is analysed for length to diameter ratio of 1,2,4 and 6. The nozzles used are De Laval type and with a Mach number of 1.74 and 2.23 and conical nozzles having Mach numbers of 1.58 and 2.06. The analysis based on fuzzy logic theory indicates that the length to diameter ratio of 1 is sufficient for smooth flow development if only the basis of wall static pressure variations is considered.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文采用模糊逻辑方法对管道内壁静压变化进行了分析,以保证管道内的顺畅流动。放大导管的面积比为2.89、6.00和10.00。取一次压力比为2.65,空腔长径比分别为1和2。研究分析了长径比为1,2,4和6。所使用的喷嘴为De Laval型,马赫数为1.74和2.23,锥形喷嘴为1.58和2.06。基于模糊逻辑理论的分析表明,仅考虑壁面静压变化的基础,长径比为1足以使流动平稳发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wall Static Pressure Variation in Sudden Expansion in Cylindrical Ducts with Supersonic Flow: A Fuzzy Logic Approach
In this paper the analysis of wall static pressure variation has been done with fuzzy logic approach to have smooth flow in the duct. Here there are three area ratio choosen for the enlarged duct, 2.89, 6.00 and 10.00. The primary pressure ratio is taken as 2.65 and cavity aspect ratio is taken as 1 and 2. The study is analysed for length to diameter ratio of 1,2,4 and 6. The nozzles used are De Laval type and with a Mach number of 1.74 and 2.23 and conical nozzles having Mach numbers of 1.58 and 2.06. The analysis based on fuzzy logic theory indicates that the length to diameter ratio of 1 is sufficient for smooth flow development if only the basis of wall static pressure variations is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信