富有表现力的曲线

S. Fomin, E. Shustin
{"title":"富有表现力的曲线","authors":"S. Fomin, E. Shustin","doi":"10.1090/cams/12","DOIUrl":null,"url":null,"abstract":"We initiate the study of a class of real plane algebraic curves which we call expressive. These are the curves whose defining polynomial has the smallest number of critical points allowed by the topology of the set of real points of a curve. This concept can be viewed as a global version of the notion of a real morsification of an isolated plane curve singularity.\n\nWe prove that a plane curve \n\n \n C\n C\n \n\n is expressive if (a) each irreducible component of \n\n \n C\n C\n \n\n can be parametrized by real polynomials (either ordinary or trigonometric), (b) all singular points of \n\n \n C\n C\n \n\n in the affine plane are ordinary hyperbolic nodes, and (c) the set of real points of \n\n \n C\n C\n \n\n in the affine plane is connected. Conversely, an expressive curve with real irreducible components must satisfy conditions (a)–(c), unless it exhibits some exotic behaviour at infinity.\n\nWe describe several constructions that produce expressive curves, and discuss a large number of examples, including: arrangements of lines, parabolas, and circles; Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more.","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expressive curves\",\"authors\":\"S. Fomin, E. Shustin\",\"doi\":\"10.1090/cams/12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of a class of real plane algebraic curves which we call expressive. These are the curves whose defining polynomial has the smallest number of critical points allowed by the topology of the set of real points of a curve. This concept can be viewed as a global version of the notion of a real morsification of an isolated plane curve singularity.\\n\\nWe prove that a plane curve \\n\\n \\n C\\n C\\n \\n\\n is expressive if (a) each irreducible component of \\n\\n \\n C\\n C\\n \\n\\n can be parametrized by real polynomials (either ordinary or trigonometric), (b) all singular points of \\n\\n \\n C\\n C\\n \\n\\n in the affine plane are ordinary hyperbolic nodes, and (c) the set of real points of \\n\\n \\n C\\n C\\n \\n\\n in the affine plane is connected. Conversely, an expressive curve with real irreducible components must satisfy conditions (a)–(c), unless it exhibits some exotic behaviour at infinity.\\n\\nWe describe several constructions that produce expressive curves, and discuss a large number of examples, including: arrangements of lines, parabolas, and circles; Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more.\",\"PeriodicalId\":285678,\"journal\":{\"name\":\"Communications of the American Mathematical Society\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cams/12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究一类实平面代数曲线,我们称之为表达曲线。这些曲线的定义多项式具有曲线实点集合拓扑所允许的最小临界点。这个概念可以看作是孤立平面曲线奇点的实模化概念的一个整体版本。我们证明了平面曲线C C是可表达的,条件是:(a) C C的每个不可约分量都可以用实多项式(普通多项式或三角多项式)参数化,(b) C C在仿射平面上的所有奇点都是普通双曲节点,(C) C C在仿射平面上的实点集是连通的。相反,具有实不可约分量的表达曲线必须满足条件(a) - (c),除非它在无穷远处表现出一些奇异的行为。我们描述了几种产生富有表现力的曲线的结构,并讨论了大量的例子,包括:线、抛物线和圆的排列;Chebyshev曲线和Lissajous曲线;下菱形和上菱形;还有更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expressive curves
We initiate the study of a class of real plane algebraic curves which we call expressive. These are the curves whose defining polynomial has the smallest number of critical points allowed by the topology of the set of real points of a curve. This concept can be viewed as a global version of the notion of a real morsification of an isolated plane curve singularity. We prove that a plane curve  C C is expressive if (a) each irreducible component of  C C can be parametrized by real polynomials (either ordinary or trigonometric), (b) all singular points of C C in the affine plane are ordinary hyperbolic nodes, and (c) the set of real points of C C in the affine plane is connected. Conversely, an expressive curve with real irreducible components must satisfy conditions (a)–(c), unless it exhibits some exotic behaviour at infinity. We describe several constructions that produce expressive curves, and discuss a large number of examples, including: arrangements of lines, parabolas, and circles; Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信