离群几何角度检测算法

Zhongyang Shen
{"title":"离群几何角度检测算法","authors":"Zhongyang Shen","doi":"10.1109/ICAIIC.2019.8669090","DOIUrl":null,"url":null,"abstract":"Massive logs are generated in telecommunication networks. It is a challenge to analyze abnormal information in the big data logs quickly and effectively. We present a new outlier detection algorithm based on Unsupervised Learning Algorithm by geometric angle scanning judgment. First, calculate geometric center of measured data and several observation points around the measured data. Outliers can be segregated from normal area by density contrast method by angle based calculation. Results show that outlier geometric angle detection (OGAD) algorithm can separate anomaly from measured data effectively, and improve the accuracy of anomaly identification.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Outlier Geometric Angle Detection Algorithm\",\"authors\":\"Zhongyang Shen\",\"doi\":\"10.1109/ICAIIC.2019.8669090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive logs are generated in telecommunication networks. It is a challenge to analyze abnormal information in the big data logs quickly and effectively. We present a new outlier detection algorithm based on Unsupervised Learning Algorithm by geometric angle scanning judgment. First, calculate geometric center of measured data and several observation points around the measured data. Outliers can be segregated from normal area by density contrast method by angle based calculation. Results show that outlier geometric angle detection (OGAD) algorithm can separate anomaly from measured data effectively, and improve the accuracy of anomaly identification.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电信网络中会产生大量的日志。如何快速有效地分析大数据日志中的异常信息是一个挑战。提出了一种基于几何角度扫描判断的无监督学习算法的离群点检测算法。首先,计算测量数据的几何中心和测量数据周围的几个观测点。采用密度对比法,通过基于角度的计算,将离群点从正区分离出来。结果表明,离群几何角检测(OGAD)算法能有效地将异常从实测数据中分离出来,提高了异常识别的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier Geometric Angle Detection Algorithm
Massive logs are generated in telecommunication networks. It is a challenge to analyze abnormal information in the big data logs quickly and effectively. We present a new outlier detection algorithm based on Unsupervised Learning Algorithm by geometric angle scanning judgment. First, calculate geometric center of measured data and several observation points around the measured data. Outliers can be segregated from normal area by density contrast method by angle based calculation. Results show that outlier geometric angle detection (OGAD) algorithm can separate anomaly from measured data effectively, and improve the accuracy of anomaly identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信