基于医学知识图的智能问答系统研究

Qianjun Shuai, Mingjie Wei, Fang Miao, Libiao Jin
{"title":"基于医学知识图的智能问答系统研究","authors":"Qianjun Shuai, Mingjie Wei, Fang Miao, Libiao Jin","doi":"10.1109/IAEAC47372.2019.8997728","DOIUrl":null,"url":null,"abstract":"With the development of artificial intelligence, smart medical systems play an increasingly important role. The traditional medical question answering system can only answer the preset questions. This paper introduces a model of intelligent question answering system based on knowledge graph. It analyzes how to construct a knowledge graph using the neo4j graph database, and uses convolutional neural network to semantically parse user questions. To a certain extent, the system has improved the understanding of user questions and can give better answers.","PeriodicalId":164163,"journal":{"name":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on Intelligent Question Answering System Based on Medical Knowledge Graph\",\"authors\":\"Qianjun Shuai, Mingjie Wei, Fang Miao, Libiao Jin\",\"doi\":\"10.1109/IAEAC47372.2019.8997728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of artificial intelligence, smart medical systems play an increasingly important role. The traditional medical question answering system can only answer the preset questions. This paper introduces a model of intelligent question answering system based on knowledge graph. It analyzes how to construct a knowledge graph using the neo4j graph database, and uses convolutional neural network to semantically parse user questions. To a certain extent, the system has improved the understanding of user questions and can give better answers.\",\"PeriodicalId\":164163,\"journal\":{\"name\":\"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC47372.2019.8997728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC47372.2019.8997728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着人工智能的发展,智能医疗系统发挥着越来越重要的作用。传统的医学问答系统只能回答预设的问题。介绍了一种基于知识图谱的智能问答系统模型。分析了如何利用neo4j图形数据库构建知识图谱,并利用卷积神经网络对用户问题进行语义解析。在一定程度上,系统提高了对用户问题的理解,可以给出更好的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Intelligent Question Answering System Based on Medical Knowledge Graph
With the development of artificial intelligence, smart medical systems play an increasingly important role. The traditional medical question answering system can only answer the preset questions. This paper introduces a model of intelligent question answering system based on knowledge graph. It analyzes how to construct a knowledge graph using the neo4j graph database, and uses convolutional neural network to semantically parse user questions. To a certain extent, the system has improved the understanding of user questions and can give better answers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信