近似约束材料中的非线性波

F. Pastrone, M. Tonon
{"title":"近似约束材料中的非线性波","authors":"F. Pastrone, M. Tonon","doi":"10.1109/DD.2003.238229","DOIUrl":null,"url":null,"abstract":"In this paper, we give a general treatment of the propagation of nonlinear acceleration waves in approximately constrained elastic materials. By means of a suitable perturbative scheme, namely a Laurent expansion for the constitutive functions, we can derive the characteristic of acceleration waves, speeds and amplitudes, for elastic bodies with first and second-order poles. The theory is applied to St. Venant-Kirchhoff materials, which can be used to approximate rigid or incompressible bodies, to isotropic, anisotropic materials and to a model for unidirectionally fiber-reinforced composites.","PeriodicalId":332604,"journal":{"name":"International Seminar Day on Diffraction, 2003. Proceedings.","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear waves in approximately constrained materials\",\"authors\":\"F. Pastrone, M. Tonon\",\"doi\":\"10.1109/DD.2003.238229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give a general treatment of the propagation of nonlinear acceleration waves in approximately constrained elastic materials. By means of a suitable perturbative scheme, namely a Laurent expansion for the constitutive functions, we can derive the characteristic of acceleration waves, speeds and amplitudes, for elastic bodies with first and second-order poles. The theory is applied to St. Venant-Kirchhoff materials, which can be used to approximate rigid or incompressible bodies, to isotropic, anisotropic materials and to a model for unidirectionally fiber-reinforced composites.\",\"PeriodicalId\":332604,\"journal\":{\"name\":\"International Seminar Day on Diffraction, 2003. Proceedings.\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Seminar Day on Diffraction, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2003.238229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Seminar Day on Diffraction, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2003.238229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了非线性加速度波在近似约束弹性材料中传播的一般处理方法。通过适当的微扰格式,即本构函数的劳伦展开式,我们可以导出具有一阶和二阶极点的弹性体的加速度波的特性、速度和振幅。该理论适用于St. Venant-Kirchhoff材料,可用于近似刚性或不可压缩体,各向同性,各向异性材料和单向纤维增强复合材料的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear waves in approximately constrained materials
In this paper, we give a general treatment of the propagation of nonlinear acceleration waves in approximately constrained elastic materials. By means of a suitable perturbative scheme, namely a Laurent expansion for the constitutive functions, we can derive the characteristic of acceleration waves, speeds and amplitudes, for elastic bodies with first and second-order poles. The theory is applied to St. Venant-Kirchhoff materials, which can be used to approximate rigid or incompressible bodies, to isotropic, anisotropic materials and to a model for unidirectionally fiber-reinforced composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信