Ahmed和Khalil在NADI 2022:迁移学习和解决阿拉伯语方言识别和情感分析的阶级不平衡

Ahmed Oumar, Khalil Mrini
{"title":"Ahmed和Khalil在NADI 2022:迁移学习和解决阿拉伯语方言识别和情感分析的阶级不平衡","authors":"Ahmed Oumar, Khalil Mrini","doi":"10.18653/v1/2022.wanlp-1.46","DOIUrl":null,"url":null,"abstract":"In this paper, we present our findings in the two subtasks of the 2022 NADI shared task. First, in the Arabic dialect identification subtask, we find that there is heavy class imbalance, and propose to address this issue using focal loss. Our experiments with the focusing hyperparameter confirm that focal loss improves performance. Second, in the Arabic tweet sentiment analysis subtask, we deal with a smaller dataset, where text includes both Arabic dialects and Modern Standard Arabic. We propose to use transfer learning from both pre-trained MSA language models and our own model from the first subtask. Our system ranks in the 5th and 7th best spots of the leaderboards of first and second subtasks respectively.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"288 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ahmed and Khalil at NADI 2022: Transfer Learning and Addressing Class Imbalance for Arabic Dialect Identification and Sentiment Analysis\",\"authors\":\"Ahmed Oumar, Khalil Mrini\",\"doi\":\"10.18653/v1/2022.wanlp-1.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our findings in the two subtasks of the 2022 NADI shared task. First, in the Arabic dialect identification subtask, we find that there is heavy class imbalance, and propose to address this issue using focal loss. Our experiments with the focusing hyperparameter confirm that focal loss improves performance. Second, in the Arabic tweet sentiment analysis subtask, we deal with a smaller dataset, where text includes both Arabic dialects and Modern Standard Arabic. We propose to use transfer learning from both pre-trained MSA language models and our own model from the first subtask. Our system ranks in the 5th and 7th best spots of the leaderboards of first and second subtasks respectively.\",\"PeriodicalId\":355149,\"journal\":{\"name\":\"Workshop on Arabic Natural Language Processing\",\"volume\":\"288 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Arabic Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.wanlp-1.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了我们在2022年NADI共享任务的两个子任务中的发现。首先,在阿拉伯语方言识别子任务中,我们发现存在严重的类不平衡,并提出使用焦点损失来解决这一问题。我们对聚焦超参数的实验证实了焦损提高了性能。其次,在阿拉伯语tweet情感分析子任务中,我们处理一个较小的数据集,其中文本包括阿拉伯方言和现代标准阿拉伯语。我们建议从预训练的MSA语言模型和我们自己的第一个子任务模型中使用迁移学习。我们的系统在第一个子任务和第二个子任务的排行榜上分别排名第五和第七。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ahmed and Khalil at NADI 2022: Transfer Learning and Addressing Class Imbalance for Arabic Dialect Identification and Sentiment Analysis
In this paper, we present our findings in the two subtasks of the 2022 NADI shared task. First, in the Arabic dialect identification subtask, we find that there is heavy class imbalance, and propose to address this issue using focal loss. Our experiments with the focusing hyperparameter confirm that focal loss improves performance. Second, in the Arabic tweet sentiment analysis subtask, we deal with a smaller dataset, where text includes both Arabic dialects and Modern Standard Arabic. We propose to use transfer learning from both pre-trained MSA language models and our own model from the first subtask. Our system ranks in the 5th and 7th best spots of the leaderboards of first and second subtasks respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信