{"title":"针对FPGA实现AES的串联深度学习侧信道攻击","authors":"Huanyu Wang, E. Dubrova","doi":"10.1109/iSES50453.2020.00041","DOIUrl":null,"url":null,"abstract":"The majority of recently demonstrated deep-learning side-channel attacks use a single neural network classifier to recover the key. The potential benefits of combining multiple classifiers with ensemble learning method have not been fully explored in the side-channel attack’s context. In this paper, we show that, by combining several CNN classifiers which use different attack points, it is possible to considerably reduce (more than 40% on average) the number of traces required to recover the key from an FPGA implementation of AES by power analysis. We also show that not all combinations of classifiers improve the attack efficiency.","PeriodicalId":246188,"journal":{"name":"2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Tandem Deep Learning Side-Channel Attack Against FPGA Implementation of AES\",\"authors\":\"Huanyu Wang, E. Dubrova\",\"doi\":\"10.1109/iSES50453.2020.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of recently demonstrated deep-learning side-channel attacks use a single neural network classifier to recover the key. The potential benefits of combining multiple classifiers with ensemble learning method have not been fully explored in the side-channel attack’s context. In this paper, we show that, by combining several CNN classifiers which use different attack points, it is possible to considerably reduce (more than 40% on average) the number of traces required to recover the key from an FPGA implementation of AES by power analysis. We also show that not all combinations of classifiers improve the attack efficiency.\",\"PeriodicalId\":246188,\"journal\":{\"name\":\"2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSES50453.2020.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES50453.2020.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tandem Deep Learning Side-Channel Attack Against FPGA Implementation of AES
The majority of recently demonstrated deep-learning side-channel attacks use a single neural network classifier to recover the key. The potential benefits of combining multiple classifiers with ensemble learning method have not been fully explored in the side-channel attack’s context. In this paper, we show that, by combining several CNN classifiers which use different attack points, it is possible to considerably reduce (more than 40% on average) the number of traces required to recover the key from an FPGA implementation of AES by power analysis. We also show that not all combinations of classifiers improve the attack efficiency.