基于小波变换的EMD阈值和去噪

S. Elgamel
{"title":"基于小波变换的EMD阈值和去噪","authors":"S. Elgamel","doi":"10.1109/ICCES.2014.7030940","DOIUrl":null,"url":null,"abstract":"Empirical mode decomposition (EMD) is used as denoising technique to enhance the signal to noise ratio (SNR) for noisy signals. A new EMD denoising algorithm named EMD iterative altering thresholding and denoising (EMD-IATD) based on the traditional EMD thresholding and denoising (EMD-TD) and inspirited Wavelet denoising technique is developed in this paper. The improved SNR of the new EMD-IATD over the traditional EMD-TD algorithm is assessed using range of simulated and real environments.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EMD thresholding and denoising inspired by wavelet technique\",\"authors\":\"S. Elgamel\",\"doi\":\"10.1109/ICCES.2014.7030940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical mode decomposition (EMD) is used as denoising technique to enhance the signal to noise ratio (SNR) for noisy signals. A new EMD denoising algorithm named EMD iterative altering thresholding and denoising (EMD-IATD) based on the traditional EMD thresholding and denoising (EMD-TD) and inspirited Wavelet denoising technique is developed in this paper. The improved SNR of the new EMD-IATD over the traditional EMD-TD algorithm is assessed using range of simulated and real environments.\",\"PeriodicalId\":339697,\"journal\":{\"name\":\"2014 9th International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 9th International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2014.7030940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用经验模态分解(EMD)作为去噪技术来提高噪声信号的信噪比。本文在传统的EMD阈值与去噪(EMD- td)和启发小波去噪技术的基础上,提出了一种新的EMD迭代改变阈值与去噪(EMD- iatd)算法。利用模拟和真实环境对新EMD-IATD算法相对于传统EMD-TD算法的信噪比进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EMD thresholding and denoising inspired by wavelet technique
Empirical mode decomposition (EMD) is used as denoising technique to enhance the signal to noise ratio (SNR) for noisy signals. A new EMD denoising algorithm named EMD iterative altering thresholding and denoising (EMD-IATD) based on the traditional EMD thresholding and denoising (EMD-TD) and inspirited Wavelet denoising technique is developed in this paper. The improved SNR of the new EMD-IATD over the traditional EMD-TD algorithm is assessed using range of simulated and real environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信