广义变系数KdV方程的约简变换

Yuqing Chen, Shaowei Liu
{"title":"广义变系数KdV方程的约简变换","authors":"Yuqing Chen, Shaowei Liu","doi":"10.56557/ajomcor/2023/v30i38333","DOIUrl":null,"url":null,"abstract":"In this manuscript, we have studied the reduction transformation of the generalized variable-coefficient Korteweg-de Vries(KdV) equation by the modifed Clarkson-Kruskal(CK) direct method, and have established the connection between the generalized variable-coefficient KdV equation and the constant- coefficient KdV equation. After complicated calculations, a new transformation is obtained, which transforms the generalized one-dimensional KdV equation with variable-coefficients into the corresponding KdV equation with constant-coefficients. As we know, the new transformation has not been studied in current literature. Based on the transformation, the solution of variable-coefficient KdV equation can be obtained directly through the constant-coefficient KdV equation, and it is helpful to explore the similarity reduction and exact solution of variable-coefficient KdV equation. Furthermore, a special example is given to verify the correctness of the transformation we have proposed.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Reduction Transformation of the Generalized Variable-coefficient KdV Equation\",\"authors\":\"Yuqing Chen, Shaowei Liu\",\"doi\":\"10.56557/ajomcor/2023/v30i38333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we have studied the reduction transformation of the generalized variable-coefficient Korteweg-de Vries(KdV) equation by the modifed Clarkson-Kruskal(CK) direct method, and have established the connection between the generalized variable-coefficient KdV equation and the constant- coefficient KdV equation. After complicated calculations, a new transformation is obtained, which transforms the generalized one-dimensional KdV equation with variable-coefficients into the corresponding KdV equation with constant-coefficients. As we know, the new transformation has not been studied in current literature. Based on the transformation, the solution of variable-coefficient KdV equation can be obtained directly through the constant-coefficient KdV equation, and it is helpful to explore the similarity reduction and exact solution of variable-coefficient KdV equation. Furthermore, a special example is given to verify the correctness of the transformation we have proposed.\",\"PeriodicalId\":200824,\"journal\":{\"name\":\"Asian Journal of Mathematics and Computer Research\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics and Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/ajomcor/2023/v30i38333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2023/v30i38333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用改进的Clarkson-Kruskal(CK)直接法研究了广义变系数Korteweg-de Vries(KdV)方程的约简变换,建立了广义变系数KdV方程与常系数KdV方程之间的联系。经过复杂的计算,得到了一种新的变换,将广义一维变系数KdV方程转化为相应的常系数KdV方程。正如我们所知,目前的文献中还没有对这种新的转变进行研究。在此基础上,通过常系数KdV方程可以直接得到变系数KdV方程的解,有助于探索变系数KdV方程的相似约简和精确解。最后,通过一个特殊的算例验证了所提变换的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Reduction Transformation of the Generalized Variable-coefficient KdV Equation
In this manuscript, we have studied the reduction transformation of the generalized variable-coefficient Korteweg-de Vries(KdV) equation by the modifed Clarkson-Kruskal(CK) direct method, and have established the connection between the generalized variable-coefficient KdV equation and the constant- coefficient KdV equation. After complicated calculations, a new transformation is obtained, which transforms the generalized one-dimensional KdV equation with variable-coefficients into the corresponding KdV equation with constant-coefficients. As we know, the new transformation has not been studied in current literature. Based on the transformation, the solution of variable-coefficient KdV equation can be obtained directly through the constant-coefficient KdV equation, and it is helpful to explore the similarity reduction and exact solution of variable-coefficient KdV equation. Furthermore, a special example is given to verify the correctness of the transformation we have proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信