{"title":"潮流分析中并行高斯-塞德尔算法的瓶颈管理","authors":"Garng M. Huang, W. Ongsakul","doi":"10.1109/IPPS.1993.262781","DOIUrl":null,"url":null,"abstract":"The parallelization and implementations of Gauss-Seidel (G-S) algorithms for power flow analysis have been investigated on a Sequent Balance shared memory (SM) machine. In this paper, the authors generalize the idea to more general computer architectures and demonstrate how to effectively increase the speedup upper bounds of G-S algorithms by properly managing the bottlenecks.<<ETX>>","PeriodicalId":248927,"journal":{"name":"[1993] Proceedings Seventh International Parallel Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Managing the bottlenecks of a parallel Gauss-Seidel algorithm for power flow analysis\",\"authors\":\"Garng M. Huang, W. Ongsakul\",\"doi\":\"10.1109/IPPS.1993.262781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parallelization and implementations of Gauss-Seidel (G-S) algorithms for power flow analysis have been investigated on a Sequent Balance shared memory (SM) machine. In this paper, the authors generalize the idea to more general computer architectures and demonstrate how to effectively increase the speedup upper bounds of G-S algorithms by properly managing the bottlenecks.<<ETX>>\",\"PeriodicalId\":248927,\"journal\":{\"name\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1993.262781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Seventh International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1993.262781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Managing the bottlenecks of a parallel Gauss-Seidel algorithm for power flow analysis
The parallelization and implementations of Gauss-Seidel (G-S) algorithms for power flow analysis have been investigated on a Sequent Balance shared memory (SM) machine. In this paper, the authors generalize the idea to more general computer architectures and demonstrate how to effectively increase the speedup upper bounds of G-S algorithms by properly managing the bottlenecks.<>