从在线百科全书中获取汉语语义知识

Liu Yang, Tingting He, Xinhui Tu, Jinguang Chen
{"title":"从在线百科全书中获取汉语语义知识","authors":"Liu Yang, Tingting He, Xinhui Tu, Jinguang Chen","doi":"10.1109/NLPKE.2010.5587787","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to obtain the semantic knowledge from an online encyclopedia called Hudong encyclopedia 2(hudong baike). We obtain concepts and then their semantic related concepts and compute the semantic relatedness by utilizing inner hyperlinks and the open category information in Hudong encyclopedia. By comparing our results with human judgments, we show that our relatedness computing method is quite effective.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Obtaining chinese semantic knowledge from online encyclopedia\",\"authors\":\"Liu Yang, Tingting He, Xinhui Tu, Jinguang Chen\",\"doi\":\"10.1109/NLPKE.2010.5587787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to obtain the semantic knowledge from an online encyclopedia called Hudong encyclopedia 2(hudong baike). We obtain concepts and then their semantic related concepts and compute the semantic relatedness by utilizing inner hyperlinks and the open category information in Hudong encyclopedia. By comparing our results with human judgments, we show that our relatedness computing method is quite effective.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从在线百科全书《沪东百科全书2》中获取语义知识的方法。利用沪东百科的内部超链接和开放分类信息,获得概念和语义相关概念,并计算语义相关性。通过与人类判断结果的比较,我们证明了我们的关联度计算方法是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obtaining chinese semantic knowledge from online encyclopedia
This paper proposes a method to obtain the semantic knowledge from an online encyclopedia called Hudong encyclopedia 2(hudong baike). We obtain concepts and then their semantic related concepts and compute the semantic relatedness by utilizing inner hyperlinks and the open category information in Hudong encyclopedia. By comparing our results with human judgments, we show that our relatedness computing method is quite effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信