CSP应用中超临界二氧化碳循环的回热器瞬态模拟

Dhinesh Thanganadar, F. Fornarelli, S. Camporeale, F. Asfand, K. Patchigolla
{"title":"CSP应用中超临界二氧化碳循环的回热器瞬态模拟","authors":"Dhinesh Thanganadar, F. Fornarelli, S. Camporeale, F. Asfand, K. Patchigolla","doi":"10.1115/GT2020-14785","DOIUrl":null,"url":null,"abstract":"\n Supercritical carbon dioxide (sCO2) cycles are considered to provide a faster response to load change owing to their compact footprint. sCO2 cycles are generally highly recuperative, therefore the response time is mainly dictated by the heat exchanger characteristics. This study model the transient behaviour of a recuperator in 10 MWe simple recuperative Brayton cycle. The response for the variation of inlet temperature and mass flow boundary conditions were investigated using two approaches based on temperature and enthalpy. The performance of these two approaches are compared and the numerical schemes were discussed along with the challenges encountered. The simulation results were validated against the experimental data available in the literature with a fair agreement. The characteristic time of the heat exchanger for a step change of the boundary conditions is reported that supports the recuperator design process. Compact recuperator responded in less than 20 seconds for the changes in the temperature boundary condition whilst it can take upto 1.5 minutes for mass flow change. In order to reduce the computational effort, a logarithmic indexed lookup table approach is presented, reducing the simulation time by a factor of 20.","PeriodicalId":186943,"journal":{"name":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recuperator Transient Simulation for Supercritical Carbon Dioxide Cycle in CSP Applications\",\"authors\":\"Dhinesh Thanganadar, F. Fornarelli, S. Camporeale, F. Asfand, K. Patchigolla\",\"doi\":\"10.1115/GT2020-14785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Supercritical carbon dioxide (sCO2) cycles are considered to provide a faster response to load change owing to their compact footprint. sCO2 cycles are generally highly recuperative, therefore the response time is mainly dictated by the heat exchanger characteristics. This study model the transient behaviour of a recuperator in 10 MWe simple recuperative Brayton cycle. The response for the variation of inlet temperature and mass flow boundary conditions were investigated using two approaches based on temperature and enthalpy. The performance of these two approaches are compared and the numerical schemes were discussed along with the challenges encountered. The simulation results were validated against the experimental data available in the literature with a fair agreement. The characteristic time of the heat exchanger for a step change of the boundary conditions is reported that supports the recuperator design process. Compact recuperator responded in less than 20 seconds for the changes in the temperature boundary condition whilst it can take upto 1.5 minutes for mass flow change. In order to reduce the computational effort, a logarithmic indexed lookup table approach is presented, reducing the simulation time by a factor of 20.\",\"PeriodicalId\":186943,\"journal\":{\"name\":\"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2020-14785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-14785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于其紧凑的足迹,超临界二氧化碳(sCO2)循环被认为对负载变化提供了更快的响应。sCO2循环通常是高度可回收的,因此响应时间主要取决于热交换器的特性。本研究模拟了10mwe简单回热布雷顿循环中回热器的瞬态行为。采用基于温度和焓的两种方法研究了进口温度和质量流边界条件变化的响应。比较了这两种方法的性能,讨论了数值格式以及遇到的挑战。仿真结果与文献中已有的实验数据进行了比较,结果基本一致。报道了边界条件阶跃变化时换热器的特征时间,该特征时间支持了换热器的设计过程。紧凑的回热器响应在不到20秒的温度边界条件的变化,而它可以采取高达1.5分钟的质量流量变化。为了减少计算量,提出了一种对数索引查找表方法,将模拟时间减少了20倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recuperator Transient Simulation for Supercritical Carbon Dioxide Cycle in CSP Applications
Supercritical carbon dioxide (sCO2) cycles are considered to provide a faster response to load change owing to their compact footprint. sCO2 cycles are generally highly recuperative, therefore the response time is mainly dictated by the heat exchanger characteristics. This study model the transient behaviour of a recuperator in 10 MWe simple recuperative Brayton cycle. The response for the variation of inlet temperature and mass flow boundary conditions were investigated using two approaches based on temperature and enthalpy. The performance of these two approaches are compared and the numerical schemes were discussed along with the challenges encountered. The simulation results were validated against the experimental data available in the literature with a fair agreement. The characteristic time of the heat exchanger for a step change of the boundary conditions is reported that supports the recuperator design process. Compact recuperator responded in less than 20 seconds for the changes in the temperature boundary condition whilst it can take upto 1.5 minutes for mass flow change. In order to reduce the computational effort, a logarithmic indexed lookup table approach is presented, reducing the simulation time by a factor of 20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信