WIQ:内存数据库系统的工作密集型查询调度

Stephan Kraft, G. Casale, Alin Jula, P. Kilpatrick, D. Greer
{"title":"WIQ:内存数据库系统的工作密集型查询调度","authors":"Stephan Kraft, G. Casale, Alin Jula, P. Kilpatrick, D. Greer","doi":"10.1109/CLOUD.2012.120","DOIUrl":null,"url":null,"abstract":"We propose a novel admission control policy for database queries. Our methodology uses system measurements of CPU utilization and query backlogs to determine interference between queries in execution on the same database server. Query interference may arise due to the concurrent access of hardware and software resources and can affect performance in positive and negative ways. Specifically our admission control considers the mix of jobs in service and prioritizes the query classes consuming CPU resources more efficiently. The policy ignores I/O subsystems and is therefore highly appropriate for in-memory databases. We validate our approach in trace-driven simulation and show performance increases of query slowdowns and throughputs compared to first-come first-served and shortest expected processing time first scheduling. Simulation experiments are parameterized from system traces of a SAP HANA in-memory database installation with TPC-H type workloads.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"WIQ: Work-Intensive Query Scheduling for In-Memory Database Systems\",\"authors\":\"Stephan Kraft, G. Casale, Alin Jula, P. Kilpatrick, D. Greer\",\"doi\":\"10.1109/CLOUD.2012.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel admission control policy for database queries. Our methodology uses system measurements of CPU utilization and query backlogs to determine interference between queries in execution on the same database server. Query interference may arise due to the concurrent access of hardware and software resources and can affect performance in positive and negative ways. Specifically our admission control considers the mix of jobs in service and prioritizes the query classes consuming CPU resources more efficiently. The policy ignores I/O subsystems and is therefore highly appropriate for in-memory databases. We validate our approach in trace-driven simulation and show performance increases of query slowdowns and throughputs compared to first-come first-served and shortest expected processing time first scheduling. Simulation experiments are parameterized from system traces of a SAP HANA in-memory database installation with TPC-H type workloads.\",\"PeriodicalId\":214084,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2012.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种新的数据库查询许可控制策略。我们的方法使用CPU利用率和查询积压的系统度量来确定在同一数据库服务器上执行的查询之间的干扰。由于硬件和软件资源的并发访问,可能会产生查询干扰,并可能以积极和消极的方式影响性能。具体来说,我们的准入控制考虑了服务中作业的混合,并优先考虑了更有效地消耗CPU资源的查询类。该策略忽略I/O子系统,因此非常适合内存数据库。我们在跟踪驱动的模拟中验证了我们的方法,并显示了与先到先服务和最短预期处理时间优先调度相比,查询慢速和吞吐量的性能提高。模拟实验是根据带有TPC-H类型工作负载的SAP HANA内存数据库安装的系统跟踪进行参数化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WIQ: Work-Intensive Query Scheduling for In-Memory Database Systems
We propose a novel admission control policy for database queries. Our methodology uses system measurements of CPU utilization and query backlogs to determine interference between queries in execution on the same database server. Query interference may arise due to the concurrent access of hardware and software resources and can affect performance in positive and negative ways. Specifically our admission control considers the mix of jobs in service and prioritizes the query classes consuming CPU resources more efficiently. The policy ignores I/O subsystems and is therefore highly appropriate for in-memory databases. We validate our approach in trace-driven simulation and show performance increases of query slowdowns and throughputs compared to first-come first-served and shortest expected processing time first scheduling. Simulation experiments are parameterized from system traces of a SAP HANA in-memory database installation with TPC-H type workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信