{"title":"基于ZnO纳米线的气体传感器的可靠器件拓扑","authors":"Bruce C. Kim, Anurag Gupta","doi":"10.18689/mjnn-1000129","DOIUrl":null,"url":null,"abstract":"The frontiers of research are rapidly advancing in the area of nanowire-based sensors, which are being used for a breadth of applications. ZnO nanowires-based sensors have shown tremendous potential in the area of chemical and biological sensing but the performance of these sensors are contingent upon the successful design and packaging of sensing platform. Therefore, in this work two distinct device topologies, single ZnO nanowire device and ZnO nanowire-based array device, have been fabricated and compared for their sensing performance. The single nanowire device has been fabricated through focused ion beam and e-beam lithography techniques while SEM and EDAX analysis have been used to characterize the device. I-V characteristics of the ZnO nanowire-based array devices have been measured through a semiconductor parameter analyzer and a prospective device refresh strategy through thermal cycling has been outlined.","PeriodicalId":406289,"journal":{"name":"Madridge Journal of Nanotechnology & Nanoscience","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reliable Device Topology for ZnO Nanowire-based Gas Sensors\",\"authors\":\"Bruce C. Kim, Anurag Gupta\",\"doi\":\"10.18689/mjnn-1000129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frontiers of research are rapidly advancing in the area of nanowire-based sensors, which are being used for a breadth of applications. ZnO nanowires-based sensors have shown tremendous potential in the area of chemical and biological sensing but the performance of these sensors are contingent upon the successful design and packaging of sensing platform. Therefore, in this work two distinct device topologies, single ZnO nanowire device and ZnO nanowire-based array device, have been fabricated and compared for their sensing performance. The single nanowire device has been fabricated through focused ion beam and e-beam lithography techniques while SEM and EDAX analysis have been used to characterize the device. I-V characteristics of the ZnO nanowire-based array devices have been measured through a semiconductor parameter analyzer and a prospective device refresh strategy through thermal cycling has been outlined.\",\"PeriodicalId\":406289,\"journal\":{\"name\":\"Madridge Journal of Nanotechnology & Nanoscience\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Madridge Journal of Nanotechnology & Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18689/mjnn-1000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Madridge Journal of Nanotechnology & Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18689/mjnn-1000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Reliable Device Topology for ZnO Nanowire-based Gas Sensors
The frontiers of research are rapidly advancing in the area of nanowire-based sensors, which are being used for a breadth of applications. ZnO nanowires-based sensors have shown tremendous potential in the area of chemical and biological sensing but the performance of these sensors are contingent upon the successful design and packaging of sensing platform. Therefore, in this work two distinct device topologies, single ZnO nanowire device and ZnO nanowire-based array device, have been fabricated and compared for their sensing performance. The single nanowire device has been fabricated through focused ion beam and e-beam lithography techniques while SEM and EDAX analysis have been used to characterize the device. I-V characteristics of the ZnO nanowire-based array devices have been measured through a semiconductor parameter analyzer and a prospective device refresh strategy through thermal cycling has been outlined.