从真实用户轨迹中提取移动模型

Minkyong Kim, D. Kotz, S. Kim
{"title":"从真实用户轨迹中提取移动模型","authors":"Minkyong Kim, D. Kotz, S. Kim","doi":"10.1109/INFOCOM.2006.173","DOIUrl":null,"url":null,"abstract":"Understanding user mobility is critical for simula- tions of mobile devices in a wireless network, but current mobility models often do not reflect real user movements. In this paper, we provide a foundation for such work by exploring mobility characteristics in traces of mobile users. We present a method to estimate the physical location of users from a large trace of mobile devices associating with access points in a wireless network. Using this method, we extracted tracks of always-on Wi-Fi devices from a 13-month trace. We discovered that the speed and pause time each follow a log-normal distribution and that the direction of movements closely reflects the direction of roads and walkways. Based on the extracted mobility characteristics, we developed a mobility model, focusing on movements among popular regions. Our validation shows that synthetic tracks match real tracks with a median relative error of 17%.","PeriodicalId":163725,"journal":{"name":"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"622","resultStr":"{\"title\":\"Extracting a Mobility Model from Real User Traces\",\"authors\":\"Minkyong Kim, D. Kotz, S. Kim\",\"doi\":\"10.1109/INFOCOM.2006.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding user mobility is critical for simula- tions of mobile devices in a wireless network, but current mobility models often do not reflect real user movements. In this paper, we provide a foundation for such work by exploring mobility characteristics in traces of mobile users. We present a method to estimate the physical location of users from a large trace of mobile devices associating with access points in a wireless network. Using this method, we extracted tracks of always-on Wi-Fi devices from a 13-month trace. We discovered that the speed and pause time each follow a log-normal distribution and that the direction of movements closely reflects the direction of roads and walkways. Based on the extracted mobility characteristics, we developed a mobility model, focusing on movements among popular regions. Our validation shows that synthetic tracks match real tracks with a median relative error of 17%.\",\"PeriodicalId\":163725,\"journal\":{\"name\":\"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"622\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2006.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2006.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 622

摘要

了解用户移动性对于模拟无线网络中的移动设备至关重要,但目前的移动性模型通常不能反映真实的用户移动。在本文中,我们通过探索移动用户痕迹中的移动性特征为此类工作提供了基础。我们提出了一种方法来估计用户的物理位置从大量的移动设备的踪迹与接入点在无线网络。使用这种方法,我们从13个月的跟踪中提取了始终在线的Wi-Fi设备的轨迹。我们发现,速度和暂停时间都遵循对数正态分布,运动方向密切反映了道路和人行道的方向。基于提取的流动性特征,我们开发了一个流动性模型,重点关注热门地区之间的流动。我们的验证表明,合成轨道与真实轨道匹配,平均相对误差为17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting a Mobility Model from Real User Traces
Understanding user mobility is critical for simula- tions of mobile devices in a wireless network, but current mobility models often do not reflect real user movements. In this paper, we provide a foundation for such work by exploring mobility characteristics in traces of mobile users. We present a method to estimate the physical location of users from a large trace of mobile devices associating with access points in a wireless network. Using this method, we extracted tracks of always-on Wi-Fi devices from a 13-month trace. We discovered that the speed and pause time each follow a log-normal distribution and that the direction of movements closely reflects the direction of roads and walkways. Based on the extracted mobility characteristics, we developed a mobility model, focusing on movements among popular regions. Our validation shows that synthetic tracks match real tracks with a median relative error of 17%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信