局部随机投影与相干阵列成像的应用

R. S. Srinivasa, M. Davenport, J. Romberg
{"title":"局部随机投影与相干阵列成像的应用","authors":"R. S. Srinivasa, M. Davenport, J. Romberg","doi":"10.1109/ALLERTON.2018.8635868","DOIUrl":null,"url":null,"abstract":"We consider the standard active array imaging problem and propose a novel trade-off that enables the imaging of range limited target scenes with far fewer measurements than conventional techniques by exploiting the bandwidth of the known excitation signal. Unlike standard compressed sensing, we do not assume that the scene is sparse, only that it is range limited. We abstract the proposed method as a novel matrix sketching problem that utilizes a few localized random projections in the row space of a matrix to capture the full row space. We provide mathematical guarantees on the number of such projections required. We present imaging simulation results that support our theoretical results.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Localized random projections with applications to coherent array imaging\",\"authors\":\"R. S. Srinivasa, M. Davenport, J. Romberg\",\"doi\":\"10.1109/ALLERTON.2018.8635868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the standard active array imaging problem and propose a novel trade-off that enables the imaging of range limited target scenes with far fewer measurements than conventional techniques by exploiting the bandwidth of the known excitation signal. Unlike standard compressed sensing, we do not assume that the scene is sparse, only that it is range limited. We abstract the proposed method as a novel matrix sketching problem that utilizes a few localized random projections in the row space of a matrix to capture the full row space. We provide mathematical guarantees on the number of such projections required. We present imaging simulation results that support our theoretical results.\",\"PeriodicalId\":299280,\"journal\":{\"name\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2018.8635868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了标准的有源阵列成像问题,并提出了一种新的权衡,通过利用已知激励信号的带宽,使距离有限的目标场景的成像比传统技术的测量量少得多。与标准压缩感知不同,我们不假设场景是稀疏的,只假设它是范围有限的。我们将所提出的方法抽象为一种新的矩阵素描问题,利用矩阵行空间中的一些局部随机投影来捕获整个行空间。我们对所需的这种投影的数量提供数学保证。我们提出的成像模拟结果支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localized random projections with applications to coherent array imaging
We consider the standard active array imaging problem and propose a novel trade-off that enables the imaging of range limited target scenes with far fewer measurements than conventional techniques by exploiting the bandwidth of the known excitation signal. Unlike standard compressed sensing, we do not assume that the scene is sparse, only that it is range limited. We abstract the proposed method as a novel matrix sketching problem that utilizes a few localized random projections in the row space of a matrix to capture the full row space. We provide mathematical guarantees on the number of such projections required. We present imaging simulation results that support our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信