机械动力-硬件在环:航空衍生双轴涡轮发动机的仿真

B. A. Correa, Yucheng Zhang, R. Dougal, T. Chiocchio, K. Schoder
{"title":"机械动力-硬件在环:航空衍生双轴涡轮发动机的仿真","authors":"B. A. Correa, Yucheng Zhang, R. Dougal, T. Chiocchio, K. Schoder","doi":"10.1109/ESTS.2013.6523777","DOIUrl":null,"url":null,"abstract":"This paper presents a method for driving an AC electric motor so that it emulates, at its drive shaft, the steady-state and transient loading and unloading dynamics of an aeroderivative twin-shaft gas turbine engine. This approach allows safe and robust testing of connected equipment, for example an electric generator, without having to install (or risk damage to) an actual gas turbine engine and all of its support systems. The lower inertia constant of an aeroderivative twin-shaft gas turbine relative to a comparably powerful AC motor introduces power, accuracy, and stability limitations in the emulation system. We have studied the performance of the emulation method at reduced scale using two identical 15 kW induction machines on a common shaft in which one machine acts as gas turbine emulation motor and the other one as a generator under test. The speed controller of the vector controlled emulation motor tracks the speed of a real time reference model of an aeroderivative twin-shaft gas turbine engine. Experimental results demonstrate the power and stability limitations that apply to the emulation system.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mechanical power-hardware-in-the-loop: Emulation of an aeroderivative twin-shaft turbine engine\",\"authors\":\"B. A. Correa, Yucheng Zhang, R. Dougal, T. Chiocchio, K. Schoder\",\"doi\":\"10.1109/ESTS.2013.6523777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for driving an AC electric motor so that it emulates, at its drive shaft, the steady-state and transient loading and unloading dynamics of an aeroderivative twin-shaft gas turbine engine. This approach allows safe and robust testing of connected equipment, for example an electric generator, without having to install (or risk damage to) an actual gas turbine engine and all of its support systems. The lower inertia constant of an aeroderivative twin-shaft gas turbine relative to a comparably powerful AC motor introduces power, accuracy, and stability limitations in the emulation system. We have studied the performance of the emulation method at reduced scale using two identical 15 kW induction machines on a common shaft in which one machine acts as gas turbine emulation motor and the other one as a generator under test. The speed controller of the vector controlled emulation motor tracks the speed of a real time reference model of an aeroderivative twin-shaft gas turbine engine. Experimental results demonstrate the power and stability limitations that apply to the emulation system.\",\"PeriodicalId\":119318,\"journal\":{\"name\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2013.6523777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2013.6523777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种驱动交流电动机的方法,使其在其传动轴上模拟航空导数双轴燃气涡轮发动机的稳态和瞬态加载和卸载动力学。这种方法允许对连接设备(例如发电机)进行安全可靠的测试,而无需安装(或冒着损坏的风险)实际的燃气涡轮发动机及其所有支持系统。相对于相当强大的交流电机,航空导数双轴燃气轮机的较低惯性常数引入了仿真系统的功率、精度和稳定性限制。我们用两台相同的15kw感应电机在同一轴上,其中一台作为燃气轮机仿真电机,另一台作为被测发电机,在缩小尺寸的情况下研究了仿真方法的性能。矢量控制仿真电机的速度控制器实时跟踪航空导数双轴燃气轮机参考模型的速度。实验结果表明,该仿真系统在功率和稳定性方面存在一定的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical power-hardware-in-the-loop: Emulation of an aeroderivative twin-shaft turbine engine
This paper presents a method for driving an AC electric motor so that it emulates, at its drive shaft, the steady-state and transient loading and unloading dynamics of an aeroderivative twin-shaft gas turbine engine. This approach allows safe and robust testing of connected equipment, for example an electric generator, without having to install (or risk damage to) an actual gas turbine engine and all of its support systems. The lower inertia constant of an aeroderivative twin-shaft gas turbine relative to a comparably powerful AC motor introduces power, accuracy, and stability limitations in the emulation system. We have studied the performance of the emulation method at reduced scale using two identical 15 kW induction machines on a common shaft in which one machine acts as gas turbine emulation motor and the other one as a generator under test. The speed controller of the vector controlled emulation motor tracks the speed of a real time reference model of an aeroderivative twin-shaft gas turbine engine. Experimental results demonstrate the power and stability limitations that apply to the emulation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信