{"title":"转换系统和引用语言的注入包","authors":"M. Kabil, M. Pouzet","doi":"10.1051/ita/2020005","DOIUrl":null,"url":null,"abstract":"We consider reflexive and involutive transition systems over an ordered alphabet A equipped with an involution. We give a description of the injective envelope of any two-element set in terms of Galois lattice, from which we derive a test of its finiteness. Our description leads to the notion of Ferrers language.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Injective envelopes of transition systems and Ferrers languages\",\"authors\":\"M. Kabil, M. Pouzet\",\"doi\":\"10.1051/ita/2020005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider reflexive and involutive transition systems over an ordered alphabet A equipped with an involution. We give a description of the injective envelope of any two-element set in terms of Galois lattice, from which we derive a test of its finiteness. Our description leads to the notion of Ferrers language.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2020005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2020005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Injective envelopes of transition systems and Ferrers languages
We consider reflexive and involutive transition systems over an ordered alphabet A equipped with an involution. We give a description of the injective envelope of any two-element set in terms of Galois lattice, from which we derive a test of its finiteness. Our description leads to the notion of Ferrers language.