基于蒙特卡罗方法和遗传算法的加速退化实验优化设计

Jiantao Li, Yue Wang, Huanan Cui, Dayu Zhang, Hongqi Zhang, Song Zhang, He Wang
{"title":"基于蒙特卡罗方法和遗传算法的加速退化实验优化设计","authors":"Jiantao Li, Yue Wang, Huanan Cui, Dayu Zhang, Hongqi Zhang, Song Zhang, He Wang","doi":"10.1109/QR2MSE46217.2019.9021259","DOIUrl":null,"url":null,"abstract":"There are extensive applications of accelerated degradation test in predicting the lifetime distribution of highly reliable products. The precision of the estimation can be improved by optimizing the experimental design of the accelerated degradation test. However, the complexity of the analytical method prevents the optimization algorithm from extensive application. In this work, a two-step method, based on Monte Carlo simulation and multi-objective genetic algorithm, is presented to optimize the accelerated degradation test, where the degradation rate follows a lognormal distribution. Then, a numerical example is provided to illustrate the method. The result of simulation and sensitivity analysis shows the optimized sample allocation ratio is closely related to the random measurement error.","PeriodicalId":233855,"journal":{"name":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Design of-the Accelerated Degradation Experiment by Monte Carlo Method and Genetic Algorithm\",\"authors\":\"Jiantao Li, Yue Wang, Huanan Cui, Dayu Zhang, Hongqi Zhang, Song Zhang, He Wang\",\"doi\":\"10.1109/QR2MSE46217.2019.9021259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are extensive applications of accelerated degradation test in predicting the lifetime distribution of highly reliable products. The precision of the estimation can be improved by optimizing the experimental design of the accelerated degradation test. However, the complexity of the analytical method prevents the optimization algorithm from extensive application. In this work, a two-step method, based on Monte Carlo simulation and multi-objective genetic algorithm, is presented to optimize the accelerated degradation test, where the degradation rate follows a lognormal distribution. Then, a numerical example is provided to illustrate the method. The result of simulation and sensitivity analysis shows the optimized sample allocation ratio is closely related to the random measurement error.\",\"PeriodicalId\":233855,\"journal\":{\"name\":\"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QR2MSE46217.2019.9021259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QR2MSE46217.2019.9021259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

加速退化试验在高可靠性产品寿命分布预测中有着广泛的应用。通过优化加速退化试验的实验设计,可以提高估计的精度。然而,分析方法的复杂性阻碍了优化算法的广泛应用。本文提出了一种基于蒙特卡罗模拟和多目标遗传算法的两步优化加速退化试验方法,其中退化率服从对数正态分布。最后通过数值算例对该方法进行了说明。仿真和灵敏度分析结果表明,优化后的样本分配比例与随机测量误差密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Design of-the Accelerated Degradation Experiment by Monte Carlo Method and Genetic Algorithm
There are extensive applications of accelerated degradation test in predicting the lifetime distribution of highly reliable products. The precision of the estimation can be improved by optimizing the experimental design of the accelerated degradation test. However, the complexity of the analytical method prevents the optimization algorithm from extensive application. In this work, a two-step method, based on Monte Carlo simulation and multi-objective genetic algorithm, is presented to optimize the accelerated degradation test, where the degradation rate follows a lognormal distribution. Then, a numerical example is provided to illustrate the method. The result of simulation and sensitivity analysis shows the optimized sample allocation ratio is closely related to the random measurement error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信