分布式双稳光学系统中的准孤子

G. Surdutovich
{"title":"分布式双稳光学系统中的准孤子","authors":"G. Surdutovich","doi":"10.1364/nldos.1990.ob223","DOIUrl":null,"url":null,"abstract":"In an arbitrary bistable distributed system -e.g. passive ring resonator with nonlinear medium and stationary input signal - spatially limited solitary initial perturbation (seed pulse) of a sufficiently large amplitude and arbitrary form turns into an asymtotically rectangular pulse with exponentially small instability increment (quasisoliton). The properties of the quasisoliton are analized within the frames of a different dispersion models. Such a quasisoliton regime was realized experimentally in acousto-electronic model system and in the system with bicompound injection laser and external cavity.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Soliton Within a Distributed Bistable Optical System\",\"authors\":\"G. Surdutovich\",\"doi\":\"10.1364/nldos.1990.ob223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an arbitrary bistable distributed system -e.g. passive ring resonator with nonlinear medium and stationary input signal - spatially limited solitary initial perturbation (seed pulse) of a sufficiently large amplitude and arbitrary form turns into an asymtotically rectangular pulse with exponentially small instability increment (quasisoliton). The properties of the quasisoliton are analized within the frames of a different dispersion models. Such a quasisoliton regime was realized experimentally in acousto-electronic model system and in the system with bicompound injection laser and external cavity.\",\"PeriodicalId\":441335,\"journal\":{\"name\":\"Nonlinear Dynamics in Optical Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Dynamics in Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/nldos.1990.ob223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics in Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/nldos.1990.ob223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有非线性介质和平稳输入信号的任意双稳分布系统(如无源环谐振器)中,具有足够大振幅和任意形式的空间有限孤立初始扰动(种子脉冲)变成具有指数级小不稳定性增量(准孤立)的渐近矩形脉冲。在不同色散模型的框架内分析了准孤立子的性质。在声电子模型系统和双复合注入激光和外腔系统中实现了这种准隔离状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Soliton Within a Distributed Bistable Optical System
In an arbitrary bistable distributed system -e.g. passive ring resonator with nonlinear medium and stationary input signal - spatially limited solitary initial perturbation (seed pulse) of a sufficiently large amplitude and arbitrary form turns into an asymtotically rectangular pulse with exponentially small instability increment (quasisoliton). The properties of the quasisoliton are analized within the frames of a different dispersion models. Such a quasisoliton regime was realized experimentally in acousto-electronic model system and in the system with bicompound injection laser and external cavity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信