散射校正技术在3D PET:蒙特卡罗评价

I. Castiglioni, O. Cremonesi, M. Gilardi, V. Bettinardi, G. Rizzo, A. Savi, E. Bellotti, F. Fazio
{"title":"散射校正技术在3D PET:蒙特卡罗评价","authors":"I. Castiglioni, O. Cremonesi, M. Gilardi, V. Bettinardi, G. Rizzo, A. Savi, E. Bellotti, F. Fazio","doi":"10.1109/NSSMIC.1998.775241","DOIUrl":null,"url":null,"abstract":"In this work a Monte Carlo software package, PET-EGS, designed to simulate realistic PET clinical studies, was used to assess three different approaches to scatter correction in 3D PET: analytical (gaussian fitting technique), experimental (dual energy window technique), probabilistic (Monte Carlo technique). Phantom and clinical studies were performed by 3D PET and simulated by PET-EGS. Clinical studies were simulated assuming PET emission/transmission multivolume images as voxelized source objects describing the distribution of both the radioactivity and attenuation coefficients and accounting for out-of-field activity and media. The accuracy of PET-EGS in modeling the physical response of a 3D PET scanner was assessed by statistical comparison between measured and total (scatter+unscatter) simulated distributions (probability for the two distributions to be the same distribution: p>0.95). The accuracy of the scatter models, for each scatter correction technique, was evaluated on sinograms by statistical comparison between the estimated and the simulated scatter distributions (agreement <1 /spl sigma/). The accuracy of scatter correction was evaluated on sinograms by comparison between scatter corrected and simulated unscatter distributions (residual scatter fraction <13 %).","PeriodicalId":129202,"journal":{"name":"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Scatter correction techniques in 3D PET: a Monte Carlo evaluation\",\"authors\":\"I. Castiglioni, O. Cremonesi, M. Gilardi, V. Bettinardi, G. Rizzo, A. Savi, E. Bellotti, F. Fazio\",\"doi\":\"10.1109/NSSMIC.1998.775241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a Monte Carlo software package, PET-EGS, designed to simulate realistic PET clinical studies, was used to assess three different approaches to scatter correction in 3D PET: analytical (gaussian fitting technique), experimental (dual energy window technique), probabilistic (Monte Carlo technique). Phantom and clinical studies were performed by 3D PET and simulated by PET-EGS. Clinical studies were simulated assuming PET emission/transmission multivolume images as voxelized source objects describing the distribution of both the radioactivity and attenuation coefficients and accounting for out-of-field activity and media. The accuracy of PET-EGS in modeling the physical response of a 3D PET scanner was assessed by statistical comparison between measured and total (scatter+unscatter) simulated distributions (probability for the two distributions to be the same distribution: p>0.95). The accuracy of the scatter models, for each scatter correction technique, was evaluated on sinograms by statistical comparison between the estimated and the simulated scatter distributions (agreement <1 /spl sigma/). The accuracy of scatter correction was evaluated on sinograms by comparison between scatter corrected and simulated unscatter distributions (residual scatter fraction <13 %).\",\"PeriodicalId\":129202,\"journal\":{\"name\":\"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1998.775241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1998.775241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

在这项工作中,一个蒙特卡罗软件包,PET- egs,旨在模拟真实的PET临床研究,用于评估三维PET散射校正的三种不同方法:分析(高斯拟合技术),实验(双能量窗技术),概率(蒙特卡罗技术)。幻影和临床研究采用3D PET进行,PET- egs模拟。模拟临床研究,假设PET发射/透射多体积图像作为体素化源对象,描述放射性和衰减系数的分布,并考虑场外活动和介质。PET- egs对三维PET扫描仪物理反应建模的准确性通过测量分布与总(散点+非散点)模拟分布(两种分布相同的概率:p>0.95)的统计比较来评估。通过对估计散点分布和模拟散点分布的统计比较(一致性<1 /spl sigma/),对每种散点校正技术的散点模型的精度进行正弦图评价。通过对散点校正后的散点分布与模拟的未散点分布(残余散点分数< 13%)进行比较,对正弦图的散点校正精度进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scatter correction techniques in 3D PET: a Monte Carlo evaluation
In this work a Monte Carlo software package, PET-EGS, designed to simulate realistic PET clinical studies, was used to assess three different approaches to scatter correction in 3D PET: analytical (gaussian fitting technique), experimental (dual energy window technique), probabilistic (Monte Carlo technique). Phantom and clinical studies were performed by 3D PET and simulated by PET-EGS. Clinical studies were simulated assuming PET emission/transmission multivolume images as voxelized source objects describing the distribution of both the radioactivity and attenuation coefficients and accounting for out-of-field activity and media. The accuracy of PET-EGS in modeling the physical response of a 3D PET scanner was assessed by statistical comparison between measured and total (scatter+unscatter) simulated distributions (probability for the two distributions to be the same distribution: p>0.95). The accuracy of the scatter models, for each scatter correction technique, was evaluated on sinograms by statistical comparison between the estimated and the simulated scatter distributions (agreement <1 /spl sigma/). The accuracy of scatter correction was evaluated on sinograms by comparison between scatter corrected and simulated unscatter distributions (residual scatter fraction <13 %).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信