视频压缩中基于图像绘制的正则化结构宏块预测

Yang Xu, H. Xiong
{"title":"视频压缩中基于图像绘制的正则化结构宏块预测","authors":"Yang Xu, H. Xiong","doi":"10.1109/PCS.2010.5702587","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an optimized inpainting-based macroblock (MB) prediction mode (IP-mode) in the state-of-the-art H.264/AVC video compression engine, and investigate a natural extension of structured sparsity over the ordered Belief Propagation (BP) inference in inpainting-based prediction. The IP-mode is regularized by a global spatio-temporal consistency between the predicted content and the co-located known texture, and could be adopted in both Intra and Inter frames without redundant assistant information. It is solved by an optimization problem under Markov Random Field (MRF), and the structured sparsity of the predicted macroblock region is inferred by tensor voting projected from the decoded regions to tune the priority of message scheduling in BP with a more convergent manner. Rate-distortion optimization is maintained to select the optimal mode among the inpainting-based prediction (IP-), the intra-, and inter-modes. Compared to the existing prediction modes in H.264/AVC, the proposed inpainting-based prediction scheme is validated to achieve a better R-D performance for homogeneous visual patterns and behave a more robust error resilience capability with an intrinsic probabilistic inference.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advanced inpainting-based macroblock prediction with regularized structure propagation in video compression\",\"authors\":\"Yang Xu, H. Xiong\",\"doi\":\"10.1109/PCS.2010.5702587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an optimized inpainting-based macroblock (MB) prediction mode (IP-mode) in the state-of-the-art H.264/AVC video compression engine, and investigate a natural extension of structured sparsity over the ordered Belief Propagation (BP) inference in inpainting-based prediction. The IP-mode is regularized by a global spatio-temporal consistency between the predicted content and the co-located known texture, and could be adopted in both Intra and Inter frames without redundant assistant information. It is solved by an optimization problem under Markov Random Field (MRF), and the structured sparsity of the predicted macroblock region is inferred by tensor voting projected from the decoded regions to tune the priority of message scheduling in BP with a more convergent manner. Rate-distortion optimization is maintained to select the optimal mode among the inpainting-based prediction (IP-), the intra-, and inter-modes. Compared to the existing prediction modes in H.264/AVC, the proposed inpainting-based prediction scheme is validated to achieve a better R-D performance for homogeneous visual patterns and behave a more robust error resilience capability with an intrinsic probabilistic inference.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文在最先进的H.264/AVC视频压缩引擎中提出了一种优化的基于绘画的宏块(MB)预测模式(ip模式),并研究了结构化稀疏性在基于绘画的预测中有序信念传播(BP)推理的自然扩展。ip模式通过预测内容与同一位置的已知纹理之间的全局时空一致性进行正则化,可以在帧内和帧间使用,不需要冗余的辅助信息。利用马尔可夫随机场(MRF)下的优化问题来解决该问题,并通过从解码区域投影的张量投票来推断预测宏块区域的结构化稀疏性,从而以更收敛的方式调整BP中消息调度的优先级。保持速率失真优化,以在基于涂漆的预测(IP-),内部和内部模式中选择最佳模式。与H.264/AVC中现有的预测模式相比,所提出的基于图像绘制的预测方案对同质视觉模式具有更好的R-D性能,并且具有更强的固有概率推理的容错能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced inpainting-based macroblock prediction with regularized structure propagation in video compression
In this paper, we propose an optimized inpainting-based macroblock (MB) prediction mode (IP-mode) in the state-of-the-art H.264/AVC video compression engine, and investigate a natural extension of structured sparsity over the ordered Belief Propagation (BP) inference in inpainting-based prediction. The IP-mode is regularized by a global spatio-temporal consistency between the predicted content and the co-located known texture, and could be adopted in both Intra and Inter frames without redundant assistant information. It is solved by an optimization problem under Markov Random Field (MRF), and the structured sparsity of the predicted macroblock region is inferred by tensor voting projected from the decoded regions to tune the priority of message scheduling in BP with a more convergent manner. Rate-distortion optimization is maintained to select the optimal mode among the inpainting-based prediction (IP-), the intra-, and inter-modes. Compared to the existing prediction modes in H.264/AVC, the proposed inpainting-based prediction scheme is validated to achieve a better R-D performance for homogeneous visual patterns and behave a more robust error resilience capability with an intrinsic probabilistic inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信