面向自组织检索的语义增强转换模型

Chongyang Li
{"title":"面向自组织检索的语义增强转换模型","authors":"Chongyang Li","doi":"10.1109/ITOEC53115.2022.9734522","DOIUrl":null,"url":null,"abstract":"We propose SATM, a Semantic Augmentation Transformer Model for ad-hoc retrieval. SATM adapts contrastive learning, which improves the performance of semantic similarity and the ranking results of ad-hoc retrieval. It can also augment the semantic representation of sentence embeddings. Specifically, we first use an unsup-ervised contrastive learning augmentation module to learn query similarity so that the projection head can accurately capture query semantics. Then we use the trained encoder network to map queries and perform semantic similarity calculations and rankings with document embeddings. We use BERT to extract the contextual representation of the sentence, and use the augmentation module to enhance the semantics and eliminate the anisotropy of sentence embedding. Experimental results show that in the TrecQA data set, SATM has 4% and 1.4% improvements in MRR and MAP over Bert-base.","PeriodicalId":127300,"journal":{"name":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Augmentation Transformer Model for Ad-hoc Retrieval\",\"authors\":\"Chongyang Li\",\"doi\":\"10.1109/ITOEC53115.2022.9734522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose SATM, a Semantic Augmentation Transformer Model for ad-hoc retrieval. SATM adapts contrastive learning, which improves the performance of semantic similarity and the ranking results of ad-hoc retrieval. It can also augment the semantic representation of sentence embeddings. Specifically, we first use an unsup-ervised contrastive learning augmentation module to learn query similarity so that the projection head can accurately capture query semantics. Then we use the trained encoder network to map queries and perform semantic similarity calculations and rankings with document embeddings. We use BERT to extract the contextual representation of the sentence, and use the augmentation module to enhance the semantics and eliminate the anisotropy of sentence embedding. Experimental results show that in the TrecQA data set, SATM has 4% and 1.4% improvements in MRR and MAP over Bert-base.\",\"PeriodicalId\":127300,\"journal\":{\"name\":\"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITOEC53115.2022.9734522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITOEC53115.2022.9734522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用于自组织检索的语义增强转换模型SATM。SATM采用了对比学习,提高了语义相似度的性能和自组织检索的排序结果。它还可以增强句子嵌入的语义表示。具体来说,我们首先使用无监督的对比学习增强模块来学习查询相似度,以便投影头能够准确地捕获查询语义。然后我们使用训练好的编码器网络来映射查询,并使用文档嵌入执行语义相似度计算和排名。我们使用BERT提取句子的上下文表示,并使用增强模块增强语义,消除句子嵌入的各向异性。实验结果表明,在treqa数据集中,SATM在MRR和MAP方面比Bert-base分别提高了4%和1.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Augmentation Transformer Model for Ad-hoc Retrieval
We propose SATM, a Semantic Augmentation Transformer Model for ad-hoc retrieval. SATM adapts contrastive learning, which improves the performance of semantic similarity and the ranking results of ad-hoc retrieval. It can also augment the semantic representation of sentence embeddings. Specifically, we first use an unsup-ervised contrastive learning augmentation module to learn query similarity so that the projection head can accurately capture query semantics. Then we use the trained encoder network to map queries and perform semantic similarity calculations and rankings with document embeddings. We use BERT to extract the contextual representation of the sentence, and use the augmentation module to enhance the semantics and eliminate the anisotropy of sentence embedding. Experimental results show that in the TrecQA data set, SATM has 4% and 1.4% improvements in MRR and MAP over Bert-base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信