心脏左心房CT图像分割用于消融指导

Marc M. J. Koppert, P. Rongen, M. Prokop, B. H. Romeny, H. V. Assen
{"title":"心脏左心房CT图像分割用于消融指导","authors":"Marc M. J. Koppert, P. Rongen, M. Prokop, B. H. Romeny, H. V. Assen","doi":"10.1109/ISBI.2010.5490304","DOIUrl":null,"url":null,"abstract":"Catheter ablation is an increasingly important curative procedure for atrial fibrillation. Knowledge of the local wall thickness is essential to determine the proper ablation energy. This paper presents the first semi-automatic atrial wall thickness measurement method for ablation guidance. It includes both endocardial and epicardial atrial wall segmentation on CT image data. Segmentation is based on active contours, Otsu's multiple threshold method and hysteresis thresholding. Segmentation results were compared to contours manually drawn by two experts, using repeated measures analysis of variance. The root mean square differences between the semi-automatic and the manually drawn contours were comparable to intra-observer variation (endocardium: p = 0.23, epicardium: p = 0.18). Mean wall thickness difference is significant between one of the experts on one side, and the presented method and the other expert on the other side (p ≪ 0.001). Wall thicknesses found were in the range of 0.5–5.5mm, corresponding to values presented in literature.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cardiac left atrium CT image segmentation for ablation guidance\",\"authors\":\"Marc M. J. Koppert, P. Rongen, M. Prokop, B. H. Romeny, H. V. Assen\",\"doi\":\"10.1109/ISBI.2010.5490304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catheter ablation is an increasingly important curative procedure for atrial fibrillation. Knowledge of the local wall thickness is essential to determine the proper ablation energy. This paper presents the first semi-automatic atrial wall thickness measurement method for ablation guidance. It includes both endocardial and epicardial atrial wall segmentation on CT image data. Segmentation is based on active contours, Otsu's multiple threshold method and hysteresis thresholding. Segmentation results were compared to contours manually drawn by two experts, using repeated measures analysis of variance. The root mean square differences between the semi-automatic and the manually drawn contours were comparable to intra-observer variation (endocardium: p = 0.23, epicardium: p = 0.18). Mean wall thickness difference is significant between one of the experts on one side, and the presented method and the other expert on the other side (p ≪ 0.001). Wall thicknesses found were in the range of 0.5–5.5mm, corresponding to values presented in literature.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

导管消融是心房颤动日益重要的治疗手段。了解局部壁厚对于确定合适的烧蚀能量至关重要。提出了首个用于消融指导的半自动房壁厚度测量方法。它包括心内膜和心外膜在CT图像数据上的心房壁分割。分割基于活动轮廓、Otsu多阈值法和迟滞阈值法。分割结果与两位专家手工绘制的轮廓进行比较,采用重复测量方差分析。半自动和手动绘制轮廓的均方根差异与观察者内部差异相当(心内膜:p = 0.23,心外膜:p = 0.18)。一边的专家、所提出的方法和另一边的专家之间的平均壁厚差异是显著的(p≪0.001)。所发现的壁厚范围为0.5-5.5mm,与文献中给出的值相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiac left atrium CT image segmentation for ablation guidance
Catheter ablation is an increasingly important curative procedure for atrial fibrillation. Knowledge of the local wall thickness is essential to determine the proper ablation energy. This paper presents the first semi-automatic atrial wall thickness measurement method for ablation guidance. It includes both endocardial and epicardial atrial wall segmentation on CT image data. Segmentation is based on active contours, Otsu's multiple threshold method and hysteresis thresholding. Segmentation results were compared to contours manually drawn by two experts, using repeated measures analysis of variance. The root mean square differences between the semi-automatic and the manually drawn contours were comparable to intra-observer variation (endocardium: p = 0.23, epicardium: p = 0.18). Mean wall thickness difference is significant between one of the experts on one side, and the presented method and the other expert on the other side (p ≪ 0.001). Wall thicknesses found were in the range of 0.5–5.5mm, corresponding to values presented in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信